Secure Systems Groups

Demo Day 2015

N. Asokan, Tuomas Aura, Valtteri Niemi

"State of the Union"

Who are we?

- Aalto University
 - 2 professors
 - 1 (+1) postdocs
 - 5 full-time & several industrial PhD students
 - Several MSc thesis students
 - Several interns
- University of Helsinki
 - 1 full-time + 1 part-time professor
 - 1 postdoc
 - 1 MSc thesis student

How are we funded?

• Aalto

- 2 Academy of Finland projects
- Intel CRI for Secure Computing (ICRI-SC) at Aalto
- Basic funding from Aalto
- Research collaboration with Huawei
- MATINE (Ministry of Defense) project
- IoT SHOK
- New: Cyber Trust SHOK
- University of Helsinki
 - Basic funding from UH
 - (close collaboration with <u>ICRI-SC</u> at UH at the NODEs unit)

What do we work on?

- (Mobile) Platform Security
- Contextual Security
- Cloud Security
- 5G Security
- Security Protocol Engineering
- Network Security
- Security for Ubiquitous Computing

What do we work on?

6

Where are we publishing?

- Proc. IEEE, ACM CCS, ACM UbiComp, PMC journal
- ACM WiSec, ACM ASIACCS, Financial Crypto
- NordSec, NordiCHI
- Best Paper Awards

What do we teach?

- Information Security courses
 - Bachelor level course on Information Security
 - MSc level courses on network security, mobile system security
 - Seminar and laboratory courses
 - Shared courses between Aalto and UH
- Courses taught by industry experts
 - "Malware course" (F-Secure), Software Security (Vähä-Sipilä)

Who did we train?

- Aalto: ~12 MSc theses, ~10 BSc theses
 - Olli Jarva: won <u>best infosec thesis prize</u> (Finnish Information Security Association); runner-up best CS thesis (Finnish Computer Science Association)
- UH: 3 MSc theses
- Invited sessions at summer/winter schools
 - 2014: <u>Padova Summer School</u>, <u>Technion TCE Summer School</u>, <u>Estonian Summer School in Computer Science</u>

Industry Collaboration

- Industry-funded collaborative projects
 - Intel, Huawei
- Publicly-funded collaborative projects
 - Electrobit, Ericsson, F-Secure, Ministry of Defense, Nokia, nSense, Huawei, Trustonic
- Other collaboration with industry sector
 - Trustonic, SSH
- Collaboration with state sector
 - Väestörekisterikeskus (eID), Ministry of Justice (Internet elections), FICORA (cryptography)

Where do we go next?

- Secure Systems will continue at UH
 - Hien Truong continues as postdoc
 - I will be actively involved
 - UH will recruit a new professor for information security
- My wishlist
 - Aalto and UH Secure Systems groups work together
 - Courses in both universities open to both universities
 - Supervision across university boundaries
 - Industry collaboration to attract the best students

Demo Teasers

SEAndroid Policy Analytics

How to enable OEMs to design better SEAndroid policies?

SEAndroid is now mandatory

SEAL: A suite of tools for SEAndroid policy Analytics

Filippo Bonazzi

https://se-sy.org/projects/seal

13

UNIVERSITY OF HELSINKI

Manual analysis: examples of ineffective and potentially unsafe rules added by OEMs

Open Virtual TEE

What is needed to enable app developers to use trusted h/w?

 Open-TEE is a GlobalPlatform (GP)-compliant virtual trusted execution environment (TEE)

- Intended as a developer aid; can also be a fall-back TEE

Open-TEE session for <u>GP App Developers Workshop</u>

Deploying TEE-based Authentication

What do service providers need in order to improve security/privacy in their services using TEEs?

- Support entire user base:
 - Devices with different types of TEEs, no TEEs
- Showcase: eID scheme specified by VRK

inte

Person authentication in Finland

- Transaction Authentication Number
 - One time passcode cards
 - Widely used
 - High logistics costs, controlled by banks
- Citizen PKI (Kansalaisvarmenne)
 - Deployed for over a decade
 - Expensive, requires a reader
- "Mobile PKI" (<u>Mobiilivarmenne</u>)
 - Controlled by mobile carriers

		Card no.	900875922
01-IU 4455	11-LN 3207	21-GR 2807	31-WD 755
02-OH 7438	12-UF 6838	22-RX 1323	32-WK 776
03-NU 2365	13-SL 7027	23-PJ 7191	33-KY 0452
04-II 8859	14-RN 7894	24-WZ 6752	34-MF 0965
05-IQ 0388	15-BE 1806	25-XQ 1597	35-CN 4260
06-WQ 3572	16-ZL 1769	26-IM 1498	36-TZ 5047
07-SJ 7844	17-QM 3891	27-MI 0762	37-SM 7916
08-IV 6424	18-TP 9892	28-TM 0987	38-KQ 6426
09-GK 9623	19-US 1854	29-PD 5288	39-ES 5992
10-WU 5578	20-TH 5502	30-UH 5939	40-VJ 3515

Deploying TEE-based Authentication

What do service providers need in order to improve security/privacy in their services using TEEs?

- Support entire user base:
 - Devices with different types of TEEs, no TEEs
- Showcase: eID scheme specified by VRK
 - TPM 2.0 on a PC
 - Open-TEE on a legacy Android device
 - [Trustonic <t-Base on GS6]

https://se-sy.org/projects/eid/

inte

Collaborative Research Institute for Secure Computing

Developing apps for emerging TEEs

How to make it easy for developers to benefit from emerging new TEE architectures?

- "Make it easy for developers to benefit from TEEs"
 - On-board Credentials, Open-TEE, ...
 - GlobalPlatform standards
- New TEEs are emerging
 - SGX: Servers and PCs
 - TrustLite, SMART, ...: tiny IoT devices
 - Come with their own SDKs, programming paradigms, ..!
- But existing standards are for "split-world" TEEs
 - inspired by "TrustZone"

LookAhead: Augmenting Website Reputation Systems With Predictive Modelling

Can we predict eventual reputation ratings of websites?

Lack of Coverage (e.g., < 36% of top 1million pages have child-safety rating)

Collaborative Research Institute for Secure Computing Kalle Saari UNIVERSITY OF HELSINKI 19

Perils in designing zero-effort deauthentication

How to break a zero-effort deauthentication scheme?

- Deauthentication must be
 - Zero-effort, reliable, fast, cheap
- ZEBRA (IEEE S&P 2014)
 - Bilateral re-authentication
 - Compare "actual" interactions with "inferred" interactions
- We show how to kill ZEBRA

Can still be useful in benign settings

Social Path Lengths of People Nearby

How to determine distance between two people in a social network without sacrificing privacy?

Private membership test with Bloom filters

How to look up a keyword in a cloud-hosted database without sacrificing privacy?

- Server stores the database into an encrypted Bloom filter
- Cryptographic protocol allows client to check bits in the Bloom filter
 - Three different protocols with various performance and privacy properties
 - Demonstrator for protocol based on Goldwasser-Micali cryptosystem

Secure deduplication of encrypted data How to reconcile user privacy (client-side encryption) of cloud storage with server need of deduplication? **Oblivious Key Sharing** Surprisingly efficient Alternative solution based on server-side trusted hardware K_b K_a **Jian Liu**

Aalto University

Jian Liu UNIVERSITY OF HELSINKI 23 http://tinyurl.com/close-wp2

OmniShare

Aalto University

How to allow users to easily access encrypted cloud storage from multiple devices?

ACADEMY

OF FINLAND

CloSe

https://se-sy.org/projects/omnishare/

24

Android Package Signing Key Analytics

What can we infer from Android package signing key usage patterns in the wild?

- Android packages are self-signed
- Can key usage patterns help detect malware?

Easy Scorecard

Your device is 58% health

Whispair: Silence Signatures for Securely Forming IOT Device Domains How to automatically create groups associations for IoT devices using "silence signatures"

Effective, easy-to-use, privacy-preserving

Collaborative Research Institute for Secure Computing

Commitment-based device-pairing protocol with synchronized drawing

Can we replace passwords required in device pairing with ... something else?

Pairing touch-screen and touch-surface devices by drawing almost the same picture on two devices with two fingers of the same hand

- Protocol
- Measuring the similarity of the drawings
- Evaluation
- And other remarkably interesting stuff!

Markku Antikainen

Analysis of Topology Poisoning Attacks in Software-Defined Networks

What can attackers gain by poisoning topology of SDNs?

Motivation: Network-wide visibility is the key innovation of SDN but can be poisoned easilyGoal: To evaluate the significance of the topology

poisoning attack in different kinds of networks

Example of two compromised switches with multiple tunnels scenario

Experimental Attacks on LTE Access Networks

How well do LTE implementations guarantee user privacy and availability?

- LTE deployments are progressing fast
- We identify privacy, availability issues in real LTE deployments
- May imply ambiguity in specifications

Thank you for coming!

We appreciate your feedback.

