
Date of acceptance Grade

Instructor

Strengthening Zero-Interaction Authentication Using Contextual
Co-presence Detection

Xiang Gao

Helsinki May 28, 2014

MSc Thesis

UNIVERSITY OF HELSINKI
Department of Computer Science



Faculty of Science Department of Computer Science

Xiang Gao

Strengthening Zero-Interaction Authentication Using Contextual Co-presence Detection

Computer Science

MSc Thesis May 28, 2014 66 pages + 11 appendices

zero interaction authentication, relay attack

Designing systems that balance security and usability is a desirable but challenging goal. Zero-
Interaction Authentication (ZIA) is one example of an effort for making security easy to use. It
attempts to improve usability by avoiding explicit user interaction for the authentication process,
but instead resorting to automatically determining if the principals are co-present. Nevertheless,
current ZIA models, which detect co-presence by measuring observed signal strengths in some form
of local wireless communication, suffer from relay attacks, where attackers fool the principals by
relaying the authentication messages even if the messages exchanged in the authentication protocols
are cryptographically secured.

Contextual Co-presence Detection is an alternative technique to detect co-presence. The main
idea is that co-present principals should observe similar ambient context. Although prior work
has studied the use of single sensor modalities (audio, Bluetooth, GPS and WiFi) for perceiving
ambient context, there were (a) no fair comparisons of how different sensor modalities perform and
(b) no studies about whether fusing multiple sensor modalities would increase performance.

In this thesis, we built a data collection framework that allowed an individual user to easily col-
lect ground truth data about co-presence of a pair of devices. We applied standard classification
techniques to this data. Our results demonstrate WiFi (the set of visible WiFi access points and
their respective signal strengths) and that fusing multiple sensor modalities improves performance
in terms of security and usability. We then extended a real ZIA application (BlueProximity) with
support for contextual co-presence detection, and conducted a small-scale user study to evaluate
the usability of contextual co-presence detection as compared to co-presence detection using signal
strength only. Our study did not find evidence that the addition of contextual co-presence may
harm usability.
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1 Introduction

Nowadays, usability in security systems has been discussed and explored by academia
and practitioners. Zero-Interaction Authentication (ZIA) [CN02] is an example of
effort to improve the ease-of-use in security system design. ZIA refers to the au-
thentication process that authenticates the user (prover) to the system (verifier) by
detecting the co-presence relation without explicit user interaction in addition to
using a standard cryptographic authentication protocol. The concept of co-presence
refers to the scenario where two principals reside near to each other within a pre-
defined distance. Co-presence between the user and a device, as an alternative to
biometric-based authentication, is not in our scope of research.

ZIA is supported by the short range communication technologies, such as Radio Fre-
quency Identification (RFID) [Jue06], Near Field Communication (NFC) [HMSX12]
as an extension of RFID, and Bluetooth [LcA+04, KW05]. An RFID system consists
of readers and tags that work in a challenge-response manner to provide contact-
less identification information in the range of 0.1m to 200m. NFC is developed as
an extension of RFID enabling short-range communication (limited to 10cm) and
contact-less transactions between two handsets. RFID and NFC are widely applied
in public and private services [RFI, NFC]: credit card payment, electronic passports,
transport cards, door access cards, and vehicle keys. Alternatively, Bluetooth, as
defined in Bluetooth SIG adopted specifications [SIG], works in the range of 10 - 60
meters, and is mainly adopted in data exchange applications where the communi-
cation channel is secured with a shared session key.

Current ZIA models, however, are vulnerable to relay attacks. The typical example,
“ghost-and-leech” attack, is a kind of man-in-the-middle attack with two colluding
attackers fool the verifier by forwarding packets between the prover and the verifier.

This calls for enhancements to protect the authentication process from such relay
attacks while preserving usability. One of the traditional solutions - distance bound-
ing [BC94], a protocol that calculates proximity by measuring Round-Trip Time
(RTT), is only acceptable in limited scenarios where time delay is minimal and
hardware is specially designed. Contextual co-presence detection is an alternative
solution: co-presence is determined by comparing the context information sensed
by both principals. Co-present principals observe similar shared context, whereas
devices that are not co-present observe different contexts. Devices can observe the
nearby context by using sensors for sensing ambient environment.
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Common sensors (e.g., microphones, WiFi and Bluetooth interfaces, GPS receivers)
in commodity computing devices can be used for collecting ambient context informa-
tion. Existing contextual co-present approaches investigated single sensor modalities
including audio [HMSX12, SS13], WiFi [KH04, VS07, NT11], Bluetooth [NT11] and
GPS [MPSX12]. However, these single sensor modalities are potentially vulnerable
to attacks of manipulating the context [TRPv09]. In order to improve the security of
contextual approaches while still maintaining the usability, one approach is fusing
the context information from multiple sensor modalities. We conjecture that the
context features sensed from multiple sensor modalities make the system intrinsi-
cally difficult to attack since the complexity and dynamics of environment makes it
harder to manipulate multiple modalities simultaneously.

Our contributions:

1. We compared the performance of four ubiquitous sensor modalities - audio,
WiFi, Bluetooth, GPS - used for contextual co-presence detection. To do
so, we designed a data collection framework and launched a data collection
to collect co-present data. Our comparison reveals the difference in resisting
relay attacks for single sensor modalities.

2. We built a contextual co-presence decision model by fusing multiple sensor
modalities for ZIA. Our data analysis demonstrates that the fusion approach
improves security against relay attacks without sacrificing usability.

3. We built a demonstrative system, which we call BlueProximity++, for contex-
tual co-presence detection augmented ZIA model. We conducted a small-scale
user study to evaluate the performance of our model in practical scenarios.

These contributions resulted from a joint work by members of Secure Systems
group in University of Helsinki (Finland) and University of Alabama at Birmingham
(USA). I was responsible for conducting the data collection and implementing the
data collection framework, designing and implementing the demonstrative system
BlueProximity++, and conducting the user study for evaluation. I also contributed
to the data analysis.

The thesis is structured as follows. Section 2 introduces the background informa-
tion, including Zero-Interaction Authentication, relay attacks, and ubiquitous sensor
modalities. Section 3 presents the related work on relay attack resilience for ZIA
models, and existing context-based authentication approaches. Section 4 presents
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the statement of the problem we address and its requirements. Section 5 describes
the data collection framework designed for our research. Section 6 and 7 presents
the data collection and analysis process to get the contextual co-presence decision
model. Section 8 proposes an initial adversarial model and the resilience of our ap-
proach against such attacks in such a model. Section 9 describes our demonstrative
system BlueProximity++ and the small-scale user study to evaluate its practical
performance. Section 10 evaluates our contextual co-presence detection approach.
And finally Section 11 concludes this thesis by summarizing our contributions and
discussing the future plan.

2 Background

2.1 Zero-Interaction Authentication

Zero-Interaction Authentication (ZIA) [CN02] was developed to solve the problem
of frequent re-authentication and to improve the usability. This problem resides
in scenarios like frequently opening the door of a car using a contact-less key, or
unlocking a laptop every time the user returns from a break. In ZIA, the user holds
a device as a contact-less key to unlock a locked system (a locked car or a locked
laptop) via a short-range wireless communication channel.

Figure 1: System model for ZIA.

Figure 1 describes the conventional ZIA model, where the user U tries to authen-
ticate to a terminal T by approaching it with a device D. We assume that D is
always carried by U . Before using ZIA, the user U is required to set up an initial
security context by “binding” or “registering” the prover D to the verifier T . This
setup procedure results in a security association between T and D, e.g., a shared
secret key K. ZIA is triggered when D approaches T :
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• T authenticates D by running a traditional challenge-response entity authen-
tication protocol based on the pre-established shared security association;

• T verifies that D is at a short physical distance from it (i.e. D and T are
co-present).

ZIA is applied in many access control scenarios. For example, BlueProximity [Blu],
an open source Linux application, is designed to enable automatic locking/unlocking
T ’s screen by verifying the co-presence of D based on Bluetooth received signal
strength indicator (RSSI), without user interactions such as typing a password. The
principle under the hood is that T detects the Bluetooth signal strength of D as the
estimation of physical distance. There are other examples such as Keyless Go [Key]
(an authorization system for opening/closing a vehicle door), PhoneAuth [CDK+12]
(a two-factor authorization system for web use), and potential proximity-based ac-
cess control systems using wearable devices [Tog13].

2.2 Relay Attacks

ZIA model is vulnerable to relay attacks such as “ghost-and-leech” (as shown in
Figure 2). We assume the terminal T and the device D are actually far away (not
intending to trigger authentication). In this scenario, the attacker uses a leech (Ad
plays as a terminal) near D, and a ghost (At plays as a device) near T . Both At

and Ad are responsible for relaying encrypted authentication information (challenge
ch and response rsp) via a high bandwidth connection. As a result, T concludes
that D is in close proximity because the authentication protocol and the proximity
distance measure both succeed. Security is therefore compromised.

Figure 2: Relay attack for ZIA model [KW05].

The distance limitation between Ad and D might lead to attack failure, since Ad
may catch the user’s attention. However, for RFID-based applications, the distance
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between Ad and D can be extended up to 50 meters [KW05], enough to achieve the
relay attacks. And for Bluetooth-based applications, the range of communication
can be 10-60 meters, which is a loose distance limitation.

2.3 ZIA Enhanced with Contextual Co-presence

Figure 3 depicts the approach of contextual co-presence in ZIA, as a promising
resistance against relay attacks. The principle under the hood is that co-present
entities should observe similar shared context.

Figure 3: System model for ZIA with contextual co-presence.

In this approach, the communication channel between T and D is secured with
a pre-established shared key or some other form of a shared security association.
D triggers T to send a challenge message ch, and start context scanning on both
sides. The result CD and CT are generated from ambient sensor modalities. When
context scanning is done, D sends a response rsp by encrypting ch and CD with
the key K. Upon receiving rsp from D, T compares the local result CT with CD.
T concludes that D is co-present if CT and CD are similar, and the authentication
is established successfully. Otherwise, D is considered not co-present with T , and
the authentication request is declined.

When multiple sensor modalities are used to scan the context, CD and CT are
vectors. In prior work on context-based solutions for co-presence detection, some
ambient sensor modalities, such as ambient audio [HMSX12, SS13], WiFi [KH04,
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VS07, NT11], Bluetooth [NT11], GPS [MPSX12], ambient light [HMSX12], accel-
eration [MG07], etc, were investigated. However, all existing solutions are based on
single modalities.

3 Related Work

We investigated prior work on resilience against relay attacks for ZIA model. In this
section, we present the straight-forward solution - distance bounding, and elaborate
the family of contextual co-presence solutions.

3.1 Distance Bounding

In distance bounding protocols [FDC10, RC10, MJ07] (Figure 4), there is a pair
of principals as known as verifier and prover. Both principals share a security
association that they can use to authenticate messages from each other. The verifier
sends a challenge message to the prover, and the prover computes a response for the
challenge based on the shared security association and sends the response back after
a short interval of processing time Tp. On receiving the response, the verifier checks
that the response corresponds to the challenge as specified by the authentication
protocol and gets the measured round-trip time RTT . So the lower distance bound
between verifier and prover is

distance bound =
RTT − Tp

2
· c

and c is the speed of signal propagation (i.e. the speed of electromagnetic waves).
The computed bound is a measure of proximity, which can defeat ghost-and-leech
attacks.

In practice, the processing time Tp should be minimized since a small error in Tp will
lead to a large deviation in the resulting estimation of the distance bound, given the
multiplier c. So the protocol is required to be implemented at the lowest layer of the
communication stack. It limits the application of the protocol to implementation in
hardware or firmware, therefore is not suitable for commodity mobile devices.



7

Figure 4: Distance bounding defense.

3.2 Contextual Co-presence

We investigated the prior work of relay attack resistance using contextual co-presence,
and the co-presence detection techniques. We categorized them based on the sensor
modalities used.

3.2.1 Ambient Audio

We present the two strategies for detecting co-presence based on ambient audio in-
formation: using raw recordings in Halevi et al.’s work [HMSX12], and fingerprinting
techniques in Schurmann et al.’s work [SS13].

According to Halevi et al.’s work [HMSX12], they use microphones to record audio
raw signals. For any pair of mobile devices, audio recording starts simultaneously
for a short interval. After acquiring audio recordings, they transform the time-
domain signals to meaningful features (similarity and distance) that are directly
used for making proximity decisions. The following feature extraction techniques
are employed in Halevi et al.’s work for for computing the similarity and distance:

• Time-based feature extraction: Two time-domain raw audio signals de-
noted by Xi and Xj are normalized to make total energy equal to 1: X̂i = Xi

||Xi||

and X̂j =
Xj

||Xj || . The similarity S and the distanceD are computed in two ways:
(i) In the correlation-based method, cross-correlation [XCO] is used to compute
S. Cross-correlation is a mathematical means for measuring the similarity of
two waveforms, preferable for comparing two signals with uncontrolled time-
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lag. The time-based similarity of signals Xi and Xj using correlation-based
method is denoted by Sc,time(i, j), and the corresponding distance is similarly
denoted by Dc,time(i, j).

Sc,time(i, j) = max(Cross-Correlation(X̂i, X̂j)),

Dc,time(i, j) = 1− Sc,time(i, j).

(ii) In the distance-based method, Euclidean norm [Nor] is used to compute D.
The time-based distance of signals Xi and Xj using distance-based method is
denoted by Dd,time(i, j), and the corresponding similarity is similarly denoted
by Sd,time(i, j).

Dd,time(i, j) = ||X̂i − X̂j||,

Sd,time(i, j) = 1−Dd,time(i, j).

• Frequency-based feature extraction: Two time-domain raw audio sig-
nals denoted by Xi and Xj are converted to frequency domain using Fast
Fourier Transform (FFT) [FFT]. Then FFT (Xi) and FFT (Xj) are nor-
malized to ̂FFT (Xi) and ̂FFT (Xj) in the same way as the time-based ap-
proach. The similarity S and the distance D are computed in two ways: (i)
In the correlation-based method, cross-correlation is used to compute S. The
frequency-based similarity of signalsXi andXj using correlation-based method
is denoted by Sc,freq(i, j), and the corresponding distance is similarly denoted
by Dc,freq(i, j).

Sc,freq(i, j) = max(Cross-Correlation( ̂FFT (Xi), ̂FFT (Xj))),

Dc,freq(i, j) = 1− Sc,freq(i, j).

(ii) In the distance-based method, Euclidean norm [Nor] is used to com-
pute D. The frequency-based distance of signals Xi and Xj using distance-
based method is denoted by Dd,freq(i, j), and the corresponding similarity is
similarly denoted by Sd,freq(i, j).

Dd,freq(i, j) = || ̂FFT (Xi)− ̂FFT (Xj)||,

Sd,freq(i, j) = 1−Dd,freq(i, j).

• Time-Frequency-based feature extraction: Time-based and frequency-
based features are combined to compute the distance D and the similarity S.
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The time-frequency-based distance of signals Xi and Xj is denoted by D(i, j),
and the corresponding similarity is similarly denoted by S(i, j).

D(i, j) = 2

√
(Dc,time(i, j))2 + (Dd,freq(i, j))2,

S(i, j) = 1−D(i, j).

An alternative approach of generating audio context information is acoustic finger-
printing. Acoustic fingerprinting is the method of extracting characteristic patterns
from audio sequence. It is widely adopted in identifying a certain piece of sound ef-
fects or music from large audio databases. Although studies on music fingerprinting
operate on music properties like amplitude, rhythm, contour and pitch, the am-
bient audio sequence calls for more general techniques. Schurmann et al. [SS13]
developed an energy-based fingerprinting method for audio sequences to establish
audio fingerprinting-based authentication, based on Haitsma and Kalker’s robust
fingerprinting algorithm [HK02] (essentially dynamic programming). They used the
fingerprints to establish a secure channel between two co-present devices. The gen-
eral idea is to generate a fingerprint as a bit sequence from an audio sequence based
on the differences of energy between all consecutive frequency bands.

There are four steps before comparing fingerprints from the original audio sequence:
(1) dividing the audio sequence S into n frames Si, i ∈ 0, ..., n− 1 on each of which
Discrete Fourier Transformation (DFT) is applied; (2) splitting each frame Si lin-
early and evenly into m non-overlapping frequency bands Sij, j ∈ 0, ...,m− 1; (3)
establishing an energy matrix E with the sum of energy values for each Sij as ele-
ments: Ei,j =

∑
Sij[k]; (4) generating the fingerprint from the differences between

two successive Ei,j:

f(n) =

{
1, (Ei,j − Ei,j+1)− (Ei−1,j − Ei−1,j+1),

0, otherwise.

Afterwards, they use Hamming distance to represent the difference between two
fingerprints (bit sequences) and set a proper threshold for proving proximity.

Halevi et al.’s experiments indicate zero error (Table 2 of [HMSX12]), but under
the condition that co-present devices are of identical models. Schurmann et al.’s
experiment on comparing synchronously sampled data indicates around 70 percent
similarity. Although we cannot compare both strategies fairly, we can still find the
factors impacting the fingerprinting performance. It is level of ambient noise that
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increases errors in the audio fingerprint bit sequence. Besides, in places with strong
background audio sources, e.g., cafes, concert halls, CD stores, audio fingerprinting
works well. This is because the audio amplitude measurement tends to be larger in
such scenarios than in quiet places or places with evenly distributed noise.

3.2.2 WiFi

We investigated related work using WiFi to detect co-presence or generate secret
keys. In general, prior work uses WiFi in two strategies: using WiFi scan results
(information of nearby WiFi access points (APs)), and using WiFi broadcast traffic
(extracting information from raw packets). We present the representative work from
Narayanan et al. [NT11], Krumm et al. [KH04], and Varshavsky et al. [VS07].

Narayanan et al. [NT11] studied the strategy to use the list of WiFi access point
IDs nearby to prove co-presence. According to their statistics, on average, around
half of the number of AP IDs in the visible list is different from that at a different
location.

Narayanan et al. [NT11] also conducted experiments to evaluate the performance
of using WiFi broadcast packets for detecting co-presence. They derive various
independent elements that contain different values, such as IP addresses, and packet
sequence tokens. According to the experiment done at Stanford, the entropy in WiFi
broadcast packets sensed at a location and a certain time reflects the unforgeability
of presence in that location and time, which is more than enough to be used to
distinguish co-presence and non-copresence. WiFi broadcast traffic calls for sufficient
density of nearby devices, and is applicable to indoor scenarios like campus and
libraries. However, WiFi broadcast traffic is not applicable to commodity mobile
devices where accessing WiFi packets is not possible from an ordinary application.

Krumm et al. [KH04] proposed “NearMe” which uses WiFi signatures (MAC ad-
dresses and received signal strength values) features for co-presence detection. They
built a model using data collected in an office building environment and tested in
a cafeteria environment. They conjectured that their approach generalizes well to
other settings.

Varshavsky et al. [VS07] presented “Amigo” to authenticate co-present devices us-
ing various features extracted from the WiFi environment. In Amigo, two devices
perform a Diffie-Hellman key exchange after which each device monitors the radio
environment and generates a signature based on data observed and sends it to the
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other device for co-presence verification. Amigo also systematically introduced a set
of synthetic features (elaborated in Section 6.2).

3.2.3 Bluetooth

Bluetooth inquiry results can be utilized to generate useful context features similar
to those used by Narayanan et al. [NT11] and Varshavsky et al. [VS07]. Bluetooth
MAC address along with RSSIs can be extracted from the inquiry results as meta
context information for nearby devices, and the list of such meta information can
be used to detect co-presence in the same way of using WiFi access points.

Bluetooth has the similar limitations as WiFi APs. In addition, most Bluetooth
devices are personal devices, invisible by default to public due to privacy concerns.
This limitation reflects the most common situation that co-present devices observe
only each other.

3.2.4 GPS

Civilian GPS is not a reliable means to locate positions indoors, since the satellite
signal is often blocked or shielded by building structures [KBG+10]. Often, the user
has to wait for seconds and move fast in order to refresh the location displayed on
Google map. There are three reasons for the weakness: GPS positioning starts with
a slow initialization process taking the history point as the initial value; mobile GPS
receivers can compute their location faster than static receivers; the military level
signals of GPS provides better performance than the civilian level signals. Here
we emphasized that GPS’s performance of locating static objects is important in
most application scenarios where two static devices authenticate by comparing their
location information. Narayanan et al.’s report [NT11] proved the unforgeability
with more than four satellites. We can reach better performance by installing extra
components like professional GPS receivers, but that undermines the usability.

Ma et al.’s work [MPSX12] on location-aware RFID security demonstrated how to
utilize location information from GPS on co-present devices to defend against relay
attacks. They used external GPS modules to provide context comparison enhancing
simple RFID authentication. They selected longitude, latitude and speed together
as the target context information. According to the National Marine Electronics
Association (NMEA) specification [NME], they extracted position, velocity and time
values from the Recommended minimum specific GPS/Transit data (GPRMC), with
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Global Positioning System fix data (GPGGA) serving as a fix. They extracted the
accurate speed value directly from GPRMC. The speed value is computed in the GPS
unit based on Doppler Effect when the device is moving. In the proof-of-concept
experiment, they used a external GPS receiver module instead of embedded modules
in smart handsets to acquire GPS information. The GPS receiver supports rapid
satellite acquisition, ensuring acceptable performance compared to built-in GPS
module in smartphones. In their approach, they attempt to authorize the device
by detecting the proximity between the sensed location and the preset legitimate
locations. The device is authorized only if its location vector falls into a square
region centered at a legitimate location. According to the experiment result of the
location-based selective authorization, location information acquired from GPS is
strong and accurate context information for detecting co-presence.

GPS location coordinates are not available in many scenarios like indoor environ-
ment. Inspired by Narayanan et al.’s work [NT11] on similar RF sensor modalities
(e.g. WiFi and Bluetooth), we conjectured that GPS raw data can be used to gener-
ate context features for co-presence detection. GPS raw data, specifically the GPS
satellites in view (GPGSV) [NME] message provides essential information about
the visible satellites: Pseudo-Random Noise code (PRN, the unique identifier of a
satellite), Elevation (the vertical angle in 0 - 90 degree), Azimuth (the horizontal
angle from the true north in 0 - 359 degree), and Signal-Noise Ratio (SNR, indicat-
ing the received signal strength). GPGSV information is always available when the
GPS receiver is on, and is updated every second. The main idea of using GPS raw
data for co-presence detection is that devices at different locations observe different
information of the satellites in view. It seems promising to use the list of PRNs and
SNRs to distinguish co-presence and non-copresence, but it still calls for experiments
to evaluate the performance.

3.2.5 Other Sensor Modalities

Ambient Light

Halevi et al. [HMSX12] proposed an alternative co-presence detection approach
based on ambient light. They count on the fact that light illuminance that varies
at different locations inside a room. However, light illuminance differs from ambi-
ent audio in two ways: light illuminance is heavily influenced by the direction and
bearing of the smartphone, so in theory the probable error is larger than ambient
audio; the light condition observes very slow fluctuation, so the mathematical step
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mentioned for ambient audio can be altered to the mean of illuminance data over
the sampling interval. So the distance of illuminance (D(i, j)) between location i

and j is:
D(i, j) = |Li − Lj|,

where Li and Lj denote the illuminances at location i and j respectively.

Halevi et al. showed that although ambient light can be used as context informa-
tion in detecting co-presence, errors observed in their experiments undermine the
robustness of such technique. Ambient light is not considered as strong a sensor
modality as ambient audio.

Acceleration

Accelerometers are widely deployed in most commodity mobile devices. They are
passive sensors accessible all the time, and are efficient in scanning time and energy-
consumption. We investigated related work in [CKSK08, MG07, HMS01] using
acceleration to resist relay attacks.

Czeskis et al. [CKSK08] presented “context-aware communication” for RFID au-
thentication between reader and tag to defend against “ghost-and-leech” attacks.
Context-aware communication refers to the limitation that communication between
RFID reader and tag is allowed only if the action of the tag matches predefined
pattern. For example, when unlocking a car, the user has to insert the key into
the slot and twist it, which makes a defined action pattern. The authors deployed
accelerometers in RFID tags to collect acceleration information and makes decision
based on fast gesture recognition results. They also designed “secret handshakes” to
distinguish the predefined actions from daily gestures.

An alternative strategy is to detect co-presence by testing the device accelera-
tion when the user is asked to shake both handsets with one hand. Holmquist
et al. [HMS01] proposed a proof-of-art application named “Smart-Its Friends” to
establish connection by detecting contextual co-presence. The principle is to sam-
ple the acceleration measurement periodically and match the sample with preset
patterns. The user has to shake two devices in his hand to establish the dedicated
connection. R.Mayrhofer and H.Gellersen [MG07] extended their work by applying
the same technique in secure authentication.

Although shaking seems to add extra manual interactions to authentication, it is
considered intuitive action when people meet each other. Besides, shaking acceler-
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ation is difficult to be forged since acceleration values and pattern vary with time
and people.

4 Problem Statement and Requirements

We proposed the following research questions:

1. How do different sensor modalities commonly available on commodity comput-
ing devices perform when used for contextual co-presence detection to improve
the security of ZIA?

2. Does fusing multiple sensor modalities improve performance over single sensor
modalities?

3. Does the use of contextual co-presence impact usability of ZIA compared to
standard approaches for detecting co-presence?

The resulting solution targets the following requirements:

(i) Improves security compared with prior work on single sensor modalities.

(ii) Maintains acceptable usability.

(iii) Being robust to the variance of hardware and the difference of user perception
of co-presence.

We planned our research roadmap as follows:

1. Collecting sensor data with ground truth. A data collection framework is
developed to support the data collection.

2. Analyzing data to obtain classification results of single modalities and multiple
modalities.

3. Establishing a specific adversarial model for security assessment of contextual
co-presence.

4. Extending a ZIA application with contextual co-presence detection, and con-
ducting a small-scale user study for usability assessment.
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5 Framework for Data Collection

In order to collect a large sensor dataset (including ground truth), we developed
a data collection framework. It was motivated by our special requirement that we
need to collect data from two devices, either co-present or not co-present, at the
same time. Our goal was to have an easy-to-use, non-intrusive application that
enables collecting sensor data along with co-presence ground truth automatically in
a large scale. The application was implemented extensible and maintainable to be
re-purposed for other controlled experiments.

Concretely, the framework complied with the following characteristics:

• A framework with a plug-in mechanism that allows later addition of new sensor
modalities;

• The possibility for a user to indicate whether two devices are co-present or not
by providing input on only one of them.

• A balance between collecting ample data without imposing excessive battery
consumption while still letting the user to temporarily disable data collection.

5.1 Design

As Figure 5 depicts, the architecture is composed of a back-end synchronization
server (Server), a pair of devices (Device A and Device B) with a client component
on each device, and communication channels between the server and the devices.

5.1.1 Server

Server is designed to maintain the “binding” relation of the two devices belonging to
one user, and to synchronize data collection tasks by routing control messages. It is
the relay point of the communication channel between a pair of devices. The server
also provides the service to store the collected data samples on server-side database.

The server runs as a daemon service. A thread pool is implemented to maintain the
raw TCP connection from clients. Server and client exchange control messages via
the communication channel. We implemented message handling callbacks on the
basis of TCP socket communication. All messages are serialized in JSON format,
with the essential key “id” mapped to the role constants (e.g., REQ_TASK refers
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Figure 5: Data collection framework architecture.

to the message of making task requests), and optional keys mapped to extra flags
(e.g., in REQ_TASK, UUID refers to the universal unique string representing the
identity of device).

5.1.2 Client Component

Client component runs on devices to scan sensor data. It provides a user interface
for user to indicate co-presence ground truth.

The client component consists of a harness with common functionalities, and a plugin
interface for incorporating specific sensing modules for different sensors. Two devices
belonging to one user use the communication channel via server to synchronize
sensing tasks.

On the client-side, Harness consists of Network module (maintaining TCP communi-
cation with the server), UI module (providing the user interface for task control and
ground-truth indication), and Storage module (caching sensing data from all modali-
ties). We implemented plugins for different modalities: GPS plugin for GPS satellite
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information, WiFi plugin for WiFi AP scanning, Bluetooth plugin for Bluetooth de-
vice discovery, and Audio plugin for sound recording. The extensible architecture
enables incorporating additional modalities (e.g., humidity, temperature).

5.1.3 Context Scanning Task

Binding procedure

Binding is the prerequisite procedure for context scanning tasks. The purpose is
to establish an association (namely a bind) between peer devices by exchanging
meta information and registering the bind on the server. To elaborate the details
of binding procedure (Figure 6), we suppose Device A and Device B are not paired
to other devices. Device A sends a request message REQ_GETQ with its UUID
(Universally Unique Identifier) and Name (customizable by the user, by default the
model name) to Server (step 1). Upon reception, Server generates a queue number
(i.e. QNum in the figure, a 4-digit random integer) to the pending bind (Device
A and an empty placeholder), and sends the queue number back to Device A (as
ACK_GETQ) (step 2). Server keeps a pending queue number valid for 5 minutes.
Then, the user inputs the readable queue number into Device B, which sends a
REQ_VALQ message with its UUID, Name and queue number up to Server (step
3). Finally, Server validates the received queue number (step 4): if it matches
a pending queue number, then Device A and Device B are successfully bound;
otherwise, binding procedure fails. Hereafter , we use the phrase “bound devices”
to refer to two devices A and B that have been “paired” using the aforementioned
procedure.

Figure 6: Binding procedure between two devices.

Task

Figure 7 shows the procedures of a context scanning task. A task is triggered by
sending a request message from either of the bound devices (suppose it’s device
A) to the server (step 1). The request message also contains the ground truth of
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co-presence and the modality mask (a bitwise mask of the modalities enabled on
local device) of device A. Upon reception, the server sends another request message
to device B (step 2). If device B is idle, it replies with its own modality mask to
the server (step 3). Then on the server, the masks from A and B are intersected
to generate the common modality mask, and the server sends the trigger message
containing the common modality mask to both devices simultaneously (step 4).
On receiving the trigger message, A and B starts local context scanning using the
modalities enabled in the common modality mask (step 5). After completing the
local context scanning, each device uploads its local scanning results to the server
(step 6), when a context scanning task is completed.

Figure 7: Context scanning task procedures.

Time Synchronization

Time synchronization is essential to guarantee the validity of sensing data from
bound devices. We investigated standard time synchronization techniques, e.g. the
Network Time Protocol (NTP) [SS13] maintaining a reference clock and a layered
hierarchy. However, we adopted an alternative relative time synchronization mecha-
nism in our framework because it was simpler to implement and was just enough for
our data collection tasks. In our mechanism, the server triggers a task by sending
a command to a pair of bound devices simultaneously. On receiving the command,
each device starts context scanning. Each device also maintains a periodic ping-echo
heartbeat to the server, not only to keep track of the status of the server and peer
device, but also to measure the average round-trip time avgRTT between the device
and the server. Then the device time is synchronized to the server by eliminating
the transmission delay of avgRTT/2.
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5.2 Usage

Setup: The Android client application starts with a minimalist floating window
over the screen (of any other applications) as shown in Figure 8(a). This is the main
user interface pertaining to configurations and data collection tasks.

Figure 8: Data collection client: setting UIs.

The user is supposed to bind two Android devices before data collection. When a
new client connects to the server, the device information is automatically registered
to server, and a queue number is generated on user’s first device. The user has to
input the queue number into the second device to authorized the binding relation.

The user can configure related preferences in Setting panel shown in Figure 8(b).
Due to privacy concerns, we disable, by default, storing audio raw data on the server,
but the user can toggle the option to enable it. Besides, the user can customize the
“Do not disturb” options to mute the periodic prompts (with vibration, as reminder
for starting new data collection tasks).

Tasks: Before the routine data collection tasks, the user is encouraged to confirm
that the peer client is reachable and all sensor modalities are enabled. We provided
“Status UI” for the real-time status report of all sensor modalities and the reachabil-
ity of the server and peer client. As shown in Figure 9, the user is recommended to
turn on all the sensors marked with red “Disabled” sign before launching new tasks.

Figure 10 illustrates the user involvement in triggering a new task. A green smily
face means both clients are ready. In this case, the user can indicate the ground truth
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Figure 9: Data collection client: status UI.

of co-presence manually or in response to a periodic prompt (vibration reminder).
By clicking the green “Yes” or red “No” button, the corresponding co-present/non-
co-present ground truth is recorded and a subsequent context scan is triggered from
the server simultaneously. Scanning lasts for 2 minutes after which ground truth
and sensor data are uploaded to the server, and both clients return to “ready” status.

Figure 10: Data collection client: task UIs.

5.3 Sensor Data

We currently have plugins for GPS, WiFi, Bluetooth, and Audio modalities. These
modalities were chosen as they are widely deployed in commodity computing devices.

GPS raw data: We extracted the information of the visible GPS satellites from
received GPGSV messages (see Section 3.2.4). We recorded the identifier and “signal
strength” for each of the satellites in view. The identifier, i.e. the Pseudo-Random
Noise code (PRN) is an integer ranging from 1 to 32, and “signal strength” in the
form of signal-noise ratio (SNR) is an integer ranging from 1 to 100. The list of
such records was updated every second. And the resulting sample consisted of
approximately 120 such lists within 2 minutes.
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WiFi access points: We extracted the meta attributes from the result of WiFi
scanning for access points. Each entry pertaining to one access point consists of the
MAC address (BSSID) and the Received Signal Strength Identifier (RSSI). BSSID
is a string with 6 hexadecimal characters, and RSSI is an integer ranging from -
100 to -20 dBm (the empirical upper bound observed from Android devices). The
empirical period for one scan is around 1 second. Each resulting sample consists of
10 consecutive scan records.

Bluetooth inquiry results: We extracted the meta attributes from the result of
Bluetooth inquiries (with RSSIs). Each entry pertaining to one Bluetooth device
nearby consists of the MAC address (BDADDR) and RSSI. BDADDR is a string
with 6 hexadecimal characters, and RSSI is an integer ranging from -100 to -20
dBm (the empirical bounds observed from Android devices). Unlike WiFi scanning,
Bluetooth inquiry works in a broadcast-response manner, taking by default 10.24
seconds as one cycle for results. The resulting sample consisted of the inquiry results
of 10 consecutive cycles within 2 minutes.

Ambient raw audio: We recorded ambient audio in uncompressed PCM format
(wave file). The sampling rate was 44100Hz, the encoding width was 16-bit, and
the duration was 10 seconds. Due to privacy concern, the raw audio were not
directly uploaded to server. Instead, we extracted certain features (as detailed in
Section 6.2).

6 Data Collection

In this section, we describe the data collection along with the resulting dataset, and
summarize the features that we adopted in data analysis.

6.1 Description

Setup: During the middle of 2013, we conducted the data collection to gather raw
data for analysis. Five researchers (three in Helsinki, Finland, and the other two
in Birmingham, Alabama, the US) in the group participated in the data collection
using our data collection framework. All participants were instructed to use their
own devices in any scenarios without restrictions. The overall uncontrolled setting
was deliberately designed to ensure the robustness of the resulting dataset across
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various users and scenarios. Table 1 described the uncontrolled setting for data
collection.

Type Information

Time June - July, 2013
Participants 5 from Finland and the US
Devices Phones & Tablets (various models: Google Nexus 7, Samsung Galaxy

Tab 2, Acer Iconia Tab, Asus Transformer, Samsung Galaxy S3)
Places Not pre-determined, depending on places where participants collected data,

e.g., university campus, labs, libraries, cafeteria, home, streets

Table 1: Uncontrolled setting for data collection.

Result: The resulting dataset contains 2303 samples in total. We maintained a bal-
anced ground truth distribution, with 49.5% samples were co-present, while 50.5%
were not co-present. Not all samples were collected with all 4 sensor modalities.
According to our observation, missing sensor modalities were caused by the follow-
ing reasons: the participants sometimes forgot to enable all sensor modalities when
collecting data; there were no Bluetooth devices nearby or the nearby devices were
not discoverable; audio recording was sometimes disabled due to privacy concern;
the GPS receiver was in slow start phase to download almanac and ephemeris data
before capturing GPS satellite signals.

As summarized in Figure 11, most samples contained WiFi and Audio data (2269
with WiFi, and 2117 with audio), and Bluetooth and GPS data are limited but
enough for analysis (1600 with Bluetooth, and 782 with GPS).

As mentioned in Section 5.3, the time budget for each sensor modality is different:
2 minutes for GPS scanning, 20-30 seconds for WiFi (10 consecutive rounds in
practice), 10 seconds for recording ambient audio burst, and 2 minutes for Bluetooth
(up to 10 consecutive rounds).

Privacy: Prior to the campaign, all the participants consented to our privacy pol-
icy. The collected dataset is anonymized and released on request for research pur-
poses. And the participants had the right to inspect and withdraw his/her data from
our database. We anonymized all sensor raw data as a preprocessing procedure in
three ways: replacing device identifiers (including MAC addresses) with their SHA-1
hashed strings; replacing the GPS co-ordinate tuples (longitude, latitude) with the
Euclidean distance estimation on earth surface; replacing the raw audio data (wave
files) with relevant synthetic features as summarized below.
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Figure 11: Dataset distribution based on ground truth and sensor modalities.

6.2 Features

In this section, we summarize the promising features from among those discussed in
Section 3.2. These features were extracted from the dataset in a preprocessing step
before the classification described in Section 7.

6.2.1 Features for WiFi, Bluetooth, GPS

We investigated the sensors with radio-frequency (RF) emissions, capable of sensing
nearby devices in a preset range, namely scanning for beacons (i.e., WiFi APs,
Bluetooth devices in range, and GPS satellites in view). Such a beacon can be
represented as a tuple of entity identifier along with the associated signal strength
value. We defined the notations of related attributes as in Table 2.

Then we defined the following sets as an intermediate step:

1. Set of tuple (m, s) sensed by device A and B respectively (denoted by Sa, Sb):
Sa = {(m(a)

i , s
(a)
i ) | i ∈ Zna−1}, Sb = {(m(b)

i , s
(b)
i ) | i ∈ Znb−1}.

2. Set of beacon identifiers sensed by device A and B respectively (denoted by
S
(m)
a , S

(m)
b ):

S
(m)
a = {m ∀(m, s) ∈ Sa}, S(m)

b = {m ∀(m, s) ∈ Sb}.
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Table 2: Notations for RF sensor modalities.

Notation Information

a, b Identities of a pair of bound devices (A, B) which initiate sensing.
m Identifier of a sensed beacon.
s Associated signal strength.
θ Sensor-specific default value of associated signal strength.
n Number of beacons sensed by one device.
r Rank of the associated signal strength in the set of beacon records

sorted in ascending order.
m(x) Identifier of a beacon sensed by device x, x ∈ {a, b}.
s(x) Associated signal strength of a beacon sensed by device x, x ∈ {a, b}.
r(x) Rank of the associated signal strength in the set of beacon records

sorted in ascending order sensed by device x, x ∈ {a, b}.
nx Number of beacons sensed by device x, x ∈ {a, b}.
Sx Set of beacon records sensed by device x, x ∈ {a, b}.

3. Intersection of Sa and Sb (denoted by S∩): consists of devices seen by both A
and B
S∩ = {(m, s(a), s(b)) ∀m|(m, s(a)) ∈ Sa, (m, s(b)) ∈ Sb}.

4. Union of Sa and Sb (denoted by S∪): consists of devices seen by A or B with θ
filled in as the “signal strength” for devices that are not seen by either device.
S∪ = S∩ ∪ {(m, s(a), θ) ∀m|(m, s(a)) ∈ Sa,m 6∈ S(m)

b }
∪ {(m, θ, s(b)) ∀m|(m, s(b)) ∈ Sb,m 6∈ S(m)

a }.

5. Set of beacon identifiers in S∩ and S∪ (denoted by S(m)
∩ , S

(m)
∪ ):

S
(m)
∩ = {m ∀m|(m, s(a), s(b)) ∈ S∩}, S(m)

∪ = {m ∀m|(m, s(a), s(b)) ∈ S∪}.

6. Set of beacon associated signal strength values for device A and B respectively
(denoted by L(s)

a , L
(s)
b ):

L
(s)
a = {s(a)|(m, s(a), s(b)) ∈ S∩}, L(s)

b = {s(b)|(m, s(a), s(b)) ∈ S∩}.

Finally, we synthesized the following features (the first five are previously proposed
features in [DEM12, VS07, KH04]):

1. Jaccard distance: 1− |S
(m)
∩ |
|S(m)
∪ |

2. Mean of Hamming distance:
∑|S∪|

k=1 |s
(a)
k −s

(b)
k |

|S∪|

3. Euclidean distance:
√∑|S∪|

k=1(s
(a)
k − s

(b)
k )2
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4. Mean exponential of difference:
∑|S∪|

k=1 e
|s(a)
k
−s

(b)
k
|

|S∪|

5. Sum of squared of ranks:
∑|S∩|

k=1(r
(a)
k − r

(b)
k )2

where, r(a)k (respectively r(b)k ) is the rank of s(a)k (s(b)k ) in the set La (Lb) sorted
in ascending order.

6. Subset count:
∑T

i=1 fi.
where T is the sensing duration (in seconds), and

fi =

1, if S(m)
ai 6= ∅, S

(m)
bi
6= ∅, (S(m)

ai ⊆ S
(m)
bi

or S
(m)
ai ⊇ S

(m)
bi

).

0, otherwise.

Sai , Sbi are the set of records by A and B respectively at the ith second.

By testing these candidate features with our dataset, we chose the ones with better
performance (more distinguishable features between co-presence and non-copresence)
for the three different modalities:

WiFi: Features 1-5 are used. Identifier (m) is BSSID; and (s) is assigned with the
mean of RSSIs for the same MAC address in consecutive multiple cycles. θ is -100
(dBm).

Bluetooth: Features 1,3 are used. Identifier (m) is BDADDR; and (s) is assigned
with the average RSSI in consecutive multiple cycles. θ is -100 (dBm).

GPS: Feature 1-6 are used. Identifier (m) is the PRN; and (s) is assigned with the
average SNR. θ is 0.

Feature 6 is specially developed for GPS. There is a strong and practical motivation:
the GPS SNR is highly dependent on receiver hardware. Even in co-presence, the
weaker device (with limited sensitivity) may see only a subset of the stronger one’s
observation. It is witnessed for many times during the data collection campaign, and
features like Jaccard distance perform poorly whereas subset count performs better.
When GPS coordinates are available for both devices, we also use the orthodromic
distance [GGH89] as an additional feature.

6.2.2 Features for Ambient Audio

We decided to use two features proposed by Halevi et al. [HMSX12], which were
found to be the most robust among all algorithms tested: Schurmann and Sigg [SS13],
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SoundSense [LPL+09], and Shazam audio fingerprinting [Wan06]. The other features
either required careful synchronization between the two audio samples or were highly
sensitive to variations in the microphone characteristics of the devices. The chosen
features are defined as follows:

• Max cross-correlation:
Mcorr(a, b) = max(Cross-Correlation(X̂a, X̂b))

• Time-Frequency distance:
D(a, b) =

√
(Dc,time(a, b))2 + (Dd,freq(a, b))2

whereDc,time(a, b) = 1−Mcorr(a, b), andDd,freq(a, b) = || ̂FFT (Xa)− ̂FFT (Xb)||
(i.e., Euclidean norm of the difference).

Here Xa and Xb denote the raw (16-bit PCM) audio signals recorded by A and B.
X̂a and X̂b denote the normalized signals from Xa and Xb. ̂FFT (Xa) and ̂FFT (Xb)

denote the normalized Fast Fourier Transform of the corresponding time-domain
signals Xa and Xb.

7 Analysis and Results

7.1 Analysis Methodology and Metrics

We treated contextual co-presence detection as a classification task. All our experi-
ments have been performed using ten-fold cross-validation and Multiboost [Web00],
a state-of-the-art algorithm widely used for different types of context recognition
tasks, as the classification algorithm. In all experiments, decisions trees (J48 Graft)
are used as the weak learners. From each experiment, we record the 2x2 confusion
matrix, containing the number of True Positives (TP), True Negatives (TN), False
Positives (FP) and False Negatives (FN).

The classification performance of contextual co-presence detection directly influences
both the security and usability of the underlying ZIA mechanism. In particular, the
security of the system is determined by the FP rate as it indicates the probability
of T concluding that D (and hence U) is co-present erroneously. Usability, on
the other hand, is represented by the FN rate as it determines the probability of
T not being able to authenticate U even though U is co-present. In addition to
evaluating the FP and FN rates, we consider two metrics for the overall classification
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performance: (macro-averaged) F-measure [VR79] and the Matthews’ correlation
coefficient (MCC) [Mat75].

The F-measure (Fm) uses precision ( TP
TP+FP

) and recall ( TP
TP+FN

) for each class.
Fmi = 2 · precisioni·recalli

precisioni+recalli
, Fm =

∑c
i=1 wi·Fmi∑c

i=1 wi
, where i is the class index, wi = ni/N

with ni being the number of samples of the ith class and N being the total number
of samples, c is the number of classes.

MCC is an approximate statistical measure for deciding whether the prediction is
significantly more correlated with the data than a random guess. MCC is related to
chi-square statistic for a 2x2 contingency table: |MCC| =

√
χ2

n
. It can be calculated

directly from the confusion matrix as: |MCC| = TP∗TN−FP∗FN√
(TP+FP )∗(TP+FN)∗(TN+FP )∗(TN+FN)

.

It takes values between -1 and +1, with +1 representing perfect prediction, and -1
total disagreement between prediction and ground truth while 0 represents no better
than random guess.

7.2 Effect of Time Budget

Although we collected data for two minutes in each sample, the realistic time budget
for ZIA is much smaller (typically 5-15 seconds) due to usability reasons (e.g., being
able to unlock a terminal or a door quickly). To see the effect of sampling time on
the performance of classification, we consider the performance with different time
budgets. For a time budget of n seconds, we only consider the sensor data recorded
by the device in a sample within the first n seconds. Table 3 shows the results for the
uncontrolled dataset for different time budgets. Although the overall performance is
reasonable with a 5-second limit (FN=8.95%; FP=7.14%, Fm=0.921, MCC=0.841),
data was often missing from different sensor modalities: among 2303 instances, 80%
is without GPS data, 37% without WiFi data, 40% without Bluetooth and 8%
without Audio. With a 10-second budget the performance is significantly better
than with a 5-second budget as more data is captured by sensors, but it flattens
out thereafter. Consequently, we fix a 10-second time budget for all subsequent
analyses.

7.3 Single vs Multiple Modalities

Next we focus on investigating the effectiveness of single modality based co-presence
detection, and on assessing the potential improvements provided by the fusion of
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Table 3: Overall performance vs. time budget

Time Budget (s) 5 8 10 12 15

%FN 8.95 2.19 1.67 1.40 1.49
%FP 7.14 2.67 1.98 2.15 2.15
MCC 0.841 0.951 0.966 0.964 0.964
Fm 0.921 0.976 0.983 0.982 0.982
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Figure 12: MCC comparison for three modalities Audio (A) - Bluetooth (B) - GPS
(G) and their combinations.

multiple context modalities. The results of this investigation are shown in Table 4.
For a given sensor modality, we only consider samples that have data from that
sensor. To facilitate comparison, we study the fusion of modalities for the same set
of samples in each case. Among individual modalities (column 2) WiFi performs
best (Fm = 0.989, MCC = 0.978) and GPS worst (Fm = 0.776, MCC = 0.550).
Bluetooth and Audio exhibit similar performance with the former (Fm = 0.885,
MCC = 0.773) slightly better than the later (Fm = 0.857, MCC = 0.715).

The results for Bluetooth, audio and GPS clearly demonstrate that relying solely
on any single one of these modalities is not sufficient for satisfying the usability
and security requirements of ZIA. Moreover, from Figure 12 we can observe that
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the performance of these modalities improves when they are fused with another
modality.

7.4 Band Analysis

To see if the performance of an individual modality varied greatly depending on the
sampled values, we analyzed the performance separately for samples with values in
different ranges (“bands”). Tables 5 shows the results. A band consists of those
samples where the records from both devices fall in the range corresponding to
that band (e.g., there were 551 samples in which both devices saw only one other
Bluetooth device). Several conclusions can be drawn from the table. First, the
performance is significantly worse in some bands (e.g., “< 2” for Bluetooth). In
a practical ZIA implementation, samples falling in such bands can be filtered out
when evaluating contextual co-presence. Second, the performance of GPS naturally
improves when more satellites are visible – but within our 10s time budget, GPS
performs poorly because the vast majority of the samples contain only one visible
satellite.

7.5 Controlled Setting

To assess the robustness of the results with respect to common sources of noise in
sensor measurements, such as variations in device placement (pocket vs bag) and
variations in the characteristics of the ambient environment (noisy vs quiet), we
supplemented the everyday dataset with a limited dataset collected from predefined
settings. This controlled dataset was collected in order to determine if there was any
potential systematic bias as to how our testers collected the data in the uncontrolled
dataset. The controlled dataset, contains 94 samples (44 from co-present devices and
50 from non co-present devices) which were collected by two users. All were taken
in noisy environments (in crowded areas and noisy streets). In each sample, one
device was within an enclosure (pocket or backpack) while the other was exposed
(e.g., in the user’s hands).

Table 6 shows the performance of the classification in controlled dataset for different
sensor modalities (single, and all together). The results do not indicate any clear
systematic difference between the two datasets in terms of the classification per-
formance, suggesting that generally the evaluated context sensing mechanisms are
robust across variations in environmental characteristics and in device placements.
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Table 6: Controlled setting (sample sizes in brackets)

Single modality All modalities

%FN %FP MCC Fm %FN %FP MCC Fm

Audio(74) 18.18 16.67 0.644 0.825 4.55 3.33 0.917 0.960
Bluetooth(94) 4.44 2.04 0.936 0.968 4.44 0 0.958 0.979
GPS(37) 18.18 26.67 0.552 0.784 4.55 0 0.946 0.973
WiFi(88) 4.44 2.33 0.932 0.966 4.44 2.33 0.932 0.966

Table 7: Controlled vs. Uncontrolled settings

Controlled Uncontrolled

Single All Single All

MCC Fm MCC Fm MCC Fm MCC Fm

Audio 0.644 0.825 0.917 0.960 0.715 0.857 0.966 0.983
BT 0.936 0.968 0.958 0.979 0.773 0.885 0.986 0.993
GPS 0.552 0.784 0.946 0.973 0.55 0.776 0.941 0.971
WiFi 0.932 0.966 0.932 0.966 0.978 0.989 0.980 0.990

The performance of WiFi exceeds other modalities, providing near perfect results
for the uncontrolled dataset. One possible reason is that in most of the samples in
this dataset, the two devices are either very close or very far from other. This is
reasonable since our focus is on preventing relay attacks where the common case is
for the attacker to attempt relaying when the two legitimate devices are far apart.
However, it is reasonable to ask whether the FP rate of WiFi will remain as high
when the non co-present devices are much closer to each other. To investigate this
issue, we conducted another small-scale controlled experiment where we collected
data from four devices. Pairs of devices were placed in two offices that were ap-
proximately 15 meters apart, and 100 samples containing all sensor modalities were
recorded for a duration of two hours, in which 50% is from the co-present pair and
50% from the non co-present pair. The results show that (a) WiFi performance
degrades slightly with FP% rising from 1.83% to 7.14% and (b) the fusion of multi-
ple sensor modalities does improve the FP rate (to 4.76%) compared to using WiFi
alone.

Table 8 summarizes the results.
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Table 8: Performance for low-distance non co-presence

Modalities FN(%) FP(%) MCC Fm

WiFi only 10.0 7.14 0.826 0.913
All 4.0 4.76 0.912 0.957

7.6 Personalization

So far, we used data from all users to create a common user-independent model.
A natural question is whether a user-specific model would perform better. To see
this, we separated data by individuals and used them to train “personalized” mod-
els. Note that a personalized model is trained using data from only two devices,
whereas the common model was computed using data from multiple pairs of devices.
Accordingly, the user-specific evaluation also assesses the robustness of our results
hardware variations. Table 9 summarizes the results for three users (uncontrolled
data set) with the most data. Since a personalized model is more cumbersome (it
would require each user to train the model), it has to be significantly better than
the common model to justify its use, which is not the case based on our results.

7.7 Summary

We showed that WiFi is the most effective sensor modality for resisting relay attacks
against ZIA schemes based on contextual co-presence detection. We also showed that
for all combinations of sensor modalities, fusing all available modalities will improve
security (low false positives) of such ZIA schemes while retaining the high level of
usability (low false negatives) characteristic of ZIA.

8 Adversarial Analysis

So far, we assumed the Dolev-Yao [DY83] adversary model. However, the Dolev-
Yao model is intended for analyzing traditional communication protocols. Attacks
against the integrity of context sensing are known. For example, Tippenhauer et
al. [TRPv09] showed how to defeat WiFi-based positioning systems with inexpen-
sive equipment. Our proof-of-concept attack against BlueProximity was based on
changing the Bluetooth device address on the Bluetooth controller on a PC. It is not
difficult to imagine an attacker capable of generating same dominant sound near a
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pair of devices in two different locations. All this demonstrate the need for a stronger
adversary model that would cover the capability for interfering with context sensing.

Prior work on contextual co-presence largely limited their security analysis to be-
nign failures only [HMSX12]. The occasional exceptions involved testing resistance
against a few types of attacks interfering with context sensing [VS07]. In contrast,
we argue that there is a need for a precise but realistic formulation of a contextual
adversary without having to spell out specific attacks. Once such an adversary model
is defined, different contextual co-presence schemes can be analyzed with respect to
such an adversary.

8.1 Adversarial Model

Manipulating contextual information may require conspicuous equipment (like fake
access points) or actions (like playing loud music). Observe that D is usually carried
by the human user U whereas T may be unattended. We therefore postulate that
At, the attacker near T , can more easily interfere with the context sensing of T
undetected than can Ad with D. Furthermore, we assume that it is infeasible for
an attacker to suppress existing context signals. Therefore, one way to characterize
the context attacker is as follows:

• Ad can perfectly measure the context information that D would sense,

• At can fool T into sensing any context information it chooses; Specifically At
can receive context information from Ad, reproduce it perfectly near T ; and

• At (Ad) cannot suppress any other ambient context information from being
sensed by T (D).

While this is still a very powerful attacker, analyzing our features for classification
with respect to such an attacker may give some insights into the relative security of
different sensor modalities.

8.2 Results

For RF-based sensors, the context adversary as defined above can be modelled by
replacing Sb with Sa ∪ {(m, s) ∀(m, s) ∈ Sb,m 6∈ S(m)

a }. For audio, since raw audio
data is additive, the adversary can be modelled replacing Xb by Xa + Xb. To
estimate the effect of such an adversary, we took the following approach. We used
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our uncontrolled dataset with ten-fold validation. Training is done using the nine
folds of the dataset as before. But the test data was transformed as described above
to model the effect of the context adversary.

The results for WiFi, Bluetooth and audio are shown in Table 10. (We did not
include GPS in this analysis because GPS performed poorly to begin with and
spoofing GPS is likely to be harder than the other modalities. Nevertheless, we
expect the adversary model to hold for GPS as well and is likely to yield similar
results.) The first and the third row show the performance of individual and multiple
sensor modalities in the presence of the context attacker. All individual modalities
are insecure with respect to such an attacker. If we can assume that the attacker
is capable of compromising only one sensor modality at a time, the use of multiple
modalities restores security in the case of audio and Bluetooth, thanks to the effect
of WiFi. In the case of WiFi itself, the fusion of the other modalities results in only
a modest increase in security. The second row of Table 10 shows the difference in
false positive rate with respect to the same modalities in the absence of the attacker.
False positive rate of Bluetooth and Audio has comparable increases (+91.76% and
+91.23% respectively) while the increase in WiFi is a more modest 73.34%, implying
that although the powerful context attacker is very successful across the board, WiFi
performs somewhat better than the other modalities against such an attacker.

9 Application: BlueProximity++

We developed BlueProximity++ application by incorporating our contextual co-
presence detection module into BlueProximity [Blu]. We wanted the authentication
process to be more secure against relay attacks without impairing the easy-to-use
characteristics. This section presents the design and implementation of BlueProx-
imity++, and a small-scale user study.

9.1 Design

9.1.1 Access Control Scheme

BlueProximity++ supports two access control schemes: the fallback scheme using
Bluetooth RSSI only, and the advanced scheme where contextual co-presence is
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incorporated. The two schemes were designed for the subsequent usability evaluation
to make comparisons.

If the fallback scheme is enabled, as presented in Figure 13, The terminal T triggers
lock event when the measured Bluetooth RSSI of the device D decreases below the
locking threshold Θ1; T triggers unlock event when the measured Bluetooth RSSI
of D increases above the unlocking threshold Θ2.

Figure 13: BlueProximity++: co-presence detection using Bluetooth RSSI only.

Figure 14 shows our advanced scheme for BlueProximity++. We added an addi-
tional threshold Θ3 for triggering context scans, keeping Θ1 and Θ2 untouched.
When the measured Bluetooth RSSI of D measured by T rises above Θ3, T starts
scanning context information on both T and D (triggered via a communication
channel). When the Bluetooth RSSI of D rises above Θ2, T starts the contextual
authentication process with the previous context scan result from both T and D (if
the previous context scan result is missing or expired, a new context scan session is
triggered). The contextual authentication process feeds the previous scan result into
an off-line classification model (mentioned in Section 7), and gets the co-presence
indicator as output. T ’s screen unlocks upon “co-present” result (i.e., authenticated
successfully), otherwise it stays locked (i.e., authentication fails).

Fluctuations in the Bluetooth signal has a significant influence on the performance
of BlueProximity++. Bluetooth RSSI measurement is highly sensitive to other
physical factors [Gow12, Dar12] such as shadow fading (e.g. with water or human
body as obstacles), multi-path fading (e.g. in a long and narrow space), and antenna
polarization. To mitigate the fluctuation, we attempted to smooth the Bluetooth
RSSI of D measured by T . We conducted experiments to evaluate the fluctuation
and designed a smoothing algorithm. As a result, we observed steadier Bluetooth
RSSI curves after adopting the smoothing algorithm (see Appendix B).
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Figure 14: BlueProximity++: co-presence detection using context comparison and
Bluetooth RSSI.

9.1.2 Corrective Feedback Scheme

We added support of user feedback in BlueProximity++ to gather data for user
study and later performance evaluation, and also to give the means for users to
correct wrong access control decisions. We considered the following key factors that
introduce authentication errors:

1. The contextual co-presence classification model we used gives a low but non-
negligible rate of false prediction.

2. The off-line classification model resulting from the generalized dataset might
not fit well with personalized perception of “co-presence” from specific users.

3. Disruptions in Bluetooth caused by many external factors (shadow fading,
multi-path fading, antenna polarization, etc.) can lead to false negatives.

In the feedback scheme, the user receives the notification of the current access control
events onD’s UI. The notification (Figure 15) is designed to ask for user indication of
ground truth (whether or not being near T ). By clicking the green button, the user
provides the affirmative feedback (true positive or true negative). By clicking the
red button, the user provides the corrective feedback (false positive or false negative)
which triggers the corrective access control events on T as expected. All such events
and user feedback are recorded in local databases for further data analysis and
evaluation.
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Figure 15: Notification of access control events, asking for ground truth feedback.

9.1.3 Architecture

BlueProximity++ application comprises two parts: the terminal part written in
Python and C running on a Linux PC (T ), and the device part on D written in
Java running on an Android device (D). Figure 16 depicts the high-level design of
BlueProximity++ architecture.

On T , the application provides the major functionalities: detecting Bluetooth signal
from D, conducting context scans, and maintains a communication channel with D.

On D, the application maintains a communication channel with T and a local con-
text scan module.

The communication channels between T and D include the Bluetooth connection
reserved for binding T and D for one user in the initialization phase, and a communi-
cation channel via a proxy server on the Internet reserved for exchanging commands
to trigger context scan and messages for user feedback. It is designed both for user
study and the corrective feedback for giving false negative and false positive user
indications.
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Figure 16: Architecture of BlueProximity++.

9.2 Implementation

On T , Proximity Daemon is a coordinator service running in the background, mon-
itoring the Bluetooth RSSI dynamics, and harnessing all other modules. Context
Scan module triggers contextual utilities (audio, WiFi, Bluetooth, GPS) on T to
start new scanning tasks. Local scanning results are stored in a sensor object,
ready for context comparison after D’s scanning result is received. Config module is
designed for synchronizing the configuration options in a file for initialization, cou-
pled with a GUI is designed for configuration. Bind module is designed to handle
the binding procedure with D via a Bluetooth RFCOMM connection. Connection
module handles the communication channel with D for sending context scan com-
mands, accepting scan results, and exchanging lock/unlock messages for user feed-
back. There is a Sqlite database recording all lock/unlock events and user feedback,
dedicated for user study.

On D, Daemon Service is running as a foreground service, harnessing all other
modules. Feedback module is the activity for collecting user indication of ground
truth data, triggered by arriving notification message of lock/unlock events. Context
scan, Bind, and Connection module functions the same way as their counterpart on
T . A TinyDB persistent database is used for recording binding meta data and
maintaining a local copy of user feedback.
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Since Bluetooth cannot support reliable data transmission beyond its working dis-
tance (i.e. 10 meters for most Bluetooth devices following the Bluetooth 2.1 specifi-
cation), we added the network communication channel. The network communication
channel maintains a communication via a proxy reachable via the Internet, to en-
able the bound T and D to communicate with each other even when they are out of
Bluetooth range. It is implemented using the Advanced Message Queuing Protocol
(AMQP) [AMQ]. Messages are sent and received in different message queues (tagged
with unique “channel identifiers”) through a proxy where messages are routed in a
publish-subscribe pattern. And messages in the queues are encrypted using AES-
CBC and verified using message authentication code (HMAC-SHA-256). The shared
key was generated and agreed in a previous binding procedure via Bluetooth channel.

To elaborate how different modules in BlueProximity++ collaborate to achieve
tasks, we are going to describe the details of the following three tasks: binding,
locking, and unlocking.

9.2.1 Binding

Figure 17 illustrates the procedure to bind D to T . On D, Bluetooth is temporarily
set to be discoverable, and an idle port is used to register a service on the Bluetooth
Service Discovery Protocol (SDP) server (step 0). The Service UUID is known
to BlueProximity++ on both T and D. Then on T , BlueProximity++ starts to
inquire nearby candidate devices which are displayed to the user (step 1). After user
selection, the device name and MAC address are confirmed, and the port number is
found by matching the service list with known Service UUID (step 2). Soon after
that, Bluetooth RFCOMM connection is initiated by T (step 3) and confirmed by
D (step 4). By this time, the port (of D) taken for binding has been released and
used for this connection, which guarantees that no other services will preempt the
port.

T and D need exchange meta information (step 5) to complete binding. Here, device
name, Bluetooth MAC address, port number, and device UUID are exchanged.
Besides, T generates a new salt value (a random number) and sends it to D. The
shared key is generated by concatenating UUID of T , UUID of D, and the salt.
The pair of “channel identifiers” are generated by hashing the concatenation of both
UUIDs in different orders. Both the shared key and “channel identifiers” are prepared
for further network communication channel.
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Figure 17: BlueProximity++ Binding procedure.

9.2.2 Locking

To minimize the energy consumption, we designed the locking mechanism without
contextual scanning and comparison, since we emphasized on authentication instead
of de-authentication (but considered to incorporate co-presence detection into lock-
ing decision in the future). We defined the locking distance as the threshold for
Bluetooth RSSI, because we assume Bluetooth RSSI is positively correlated with
physical distance in steady environment.

The Locking algorithm runs in the background continuously. It does nothing if the
screen is already locked. If it is in the unlocked state and the RSSI goes below the
locking threshold and stays below for a sustained period (Dconfirm iterations), then
the screen is locked.

Algorithm 1 shows the details of making locking screen decisions. S is the variable
for the realtime Bluetooth RSSI of D measured by T . State is the variable for the
state of T ’s screen, with two possible values UNLOCKED (i.e., screen is unlocked)
and LOCKED (i.e., screen is locked). Θ1 refers to the customizable threshold for
triggering lock events. Dconfirm is the customizable length of the sustained period,
and acc is the accumulator the sustained period.
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Algorithm 1 Locking
Θ1← locking threshold for RSSI

Dconfirm ← confirming window

while true do
S ← Bluetooth RSSI of D measured by T

State← screen state

if State = UNLOCKED then
if S ≥ Θ1 then

acc← 0

else
acc← acc+ 1

if acc ≥ Dconfirm then
acc← 0

trigger lock event

State← LOCKED

sleep for 1s

9.2.3 Unlocking

We incorporated the contextual co-presence detection when designing the unlocking
mechanism. The actual context comparison should take place right before D comes
into the unlocking range of T . To maximize the chances of both T and D having
sufficiently recent context scans at this point, it is desirable to trigger context scans
at a lower threshold. It would be better to learn from the user behavior, but we
assigned a fixed coefficient in current release, i.e. the threshold to trigger context
scan is double the unlocking threshold.

The Unlocking algorithm runs in the background continuously. It does nothing if
the screen is already unlocked. If it is in the locked state, the RSSI goes above the
unlocking threshold and stays above for a sustained period (Dconfirm iterations), and
the recent context comparison indicates co-presence, then the screen is unlocked.

We assigned a timeout value to each contextual comparison result, i.e. the decision
(co-presence or non-copresence). So in the main thread, the following conditions
should be tested: whether the decision is available (not empty), whether the decision
has expired, whether there is already a context scan running.
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Algorithm 2 Unlocking
Θ2← unlocking threshold for RSSI

Dconfirm ← confirming window

Θ3← threshold for triggering newcontext scanning

prevResult← previous contextual comparison result

while true do
S ← Bluetooth RSSI of D measured by T

State← screen state

if State = LOCKED then
if S < Θ2 then

acc← 0

else
acc← acc+ 1

if acc ≥ Dconfirm then
acc← 0

if prevResult is null or prevResult expired then
if context scan is not running then

trigger new context scan and update prevResult

else if prevResult = co-presence then
acc← 0

trigger unlock event
State← UNLOCKED

continue
if S >= Θ3 then

if prevResult is null or prevResult is expired then
if context scan is not running then

trigger new context scan and update prevResult

sleep for 1s
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Algorithm 2 explains the details of making unlocking screen decisions. Θ2 refers to
the customizable threshold for triggering unlock events. Θ3 refers to the threshold
for triggering a new context scan (currently hardcoded as double Θ2).

9.3 Usage

We provide Debian and Android packages. BlueProximity++ registers itself as a
start-up program after installation. The first step for a new setup is binding T and
D. User are required to operate on both T and D to complete binding procedures.
After binding, meta information for each other will be registered and displayed on
user interfaces, as shown in Figure 18.

Figure 18: Configuration UIs for binding.

Users are allowed to switch between two modes - with or without contextual co-
presence detection - by toggling the preference entry in context setting user inter-
face. Originally, we integrated a simple toggle button in Proximity Details as shown
in Figure 19. By default, contextual co-presence detection is enabled in BlueProx-
imity++.

After the user study, we decided to update the configuration design to provide fine-
grained control of context settings. As shown in Figure 20, we designed a standalone
tab Context Setting with a group of radio buttons. The default option remains the
same. Users are allowed to disable the contextual co-presence detection temporarily
for a given period or until D is reachable (in case of network failure). We also
provide two baselines in context setting: the fallback co-presence detection with
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Figure 19: Original design of context setting UI.

Bluetooth RSSI only via the Disable permanently button, and completely disabling
Zero-Interaction Authentication via the Pause button.

Figure 20: Current fine-grained context setting UI.

In normal use cases, when the user (with registered device) come inside the nearby
range of D, T ’s screen will automatically unlock within a few seconds; and when the
user leaves far away from T ’s nearby range, T ’s screen will automatically lock within
a few seconds. Upon locking or unlocking events, the user will receive prompts from
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D, asking for ground truth indication. As shown in Figure 21, the prompt shows the
current specific screen state “locked” or “unlocked”, and asks the user whether being
inside the nearby range. By clicking the green or red buttons, the user is providing
the ground truth data of the current event as user feedback. The responses “Yes” or
“No” indicates True/False Positive/Negatives of co-presence.

Figure 21: Prompts for user feedback.

Additionally, we provide an additional fallback solution for false negative cases
(screen stays locked while the user is nearby for a few seconds). Users can unlock
T ’s screen manually from the menu button of the Android app of BlueProximity++.
This is also recorded as the user feedback in database for user study.

9.4 User Study

After implementing BlueProximity++, we launched a user study to assess its usabil-
ity. The user study was designed to evaluate the usability of BlueProximity++, and
to compare the two schemes (i.e., “Bluetooth RSSI only” or “Context comparison
and Bluetooth RSSI”) in terms of usability.

9.4.1 Description

Participants: We invited ten participants: seven of them are from Helsinki, Fin-
land, and three are from Birmingham, the United States. There is a broad distribu-
tion of nationalities: Bangladesh, China, Finland, France, India, Italy, and the US.
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But the gender and age distribution are quite biased due to the limited scale. All the
participants are with higher educational backgrounds, and they shared the similar
professional background in Computer science as researchers or students. They are
considered as professionals in computer skills (with the average of self evaluation
scoring 8.6 (σ = 1.5) on a 0-10 scale). Each participant possessed a personal com-
puter and a mobile device for daily use (mostly). All the participants used passwords
to secure their personal computers. Five participants indicated highly concerned at-
titude about the security of their personal computers (“very much”), three showed
moderately concerned attitude (“somewhat”), while two had little concern about
the security (“a little”). The demographics of the participants are summarized in
Table 11.

Type Information

Age 25-31 years old
Gender Female (1), Male (9)
Nationality 7 countries
Education M.Sc (7), Ph.D (3)
Computer Skill 8.6 (σ = 1.5) on a 0-10 scale
Use of Mobile Device Daily(9), Several times a week(1)
Use of Personal Computer Daily(8), Several times a week(2)
Use of Password Yes(10)
Security Concern Very much(5), Somewhat(3), A little(2)

Table 11: Demographics of participants

Materials: Each participant used a Linux personal computer as the primary work-
ing terminal (T) and an Android phone or tablet (either their own or provided
by us) as device (D). The participants were required to fill in all five documents
for different phases: a consent form and a demography questionnaire prior to the
user study, a System Usability Scale (SUS) questionnaires [Bro96] and a comparison
questionnaire right after the user study, and an open-ended feedback questionnaire
as an reflection. SUS questionnaire is an standardized method to generate the ag-
gregate score of usability (out of 100) for the target system in a user study. The
questionnaires are attached in the Appendices section. At the end of the study,
each participant was given a voucher or movie ticket valued 25e (or US $30) as the
reward.

Design: A within-subjects design was adopted to test the influence of different
co-presence detection schemes on usability perceived by participants. In order to
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mitigate potential learning effects, we decided to divide all participants into two bal-
anced groups, and divide the time of study into two equal rounds. Before the first
round, participants were randomly assigned to form two groups of five (Group I and
Group II ). During the first round, those in group I were required to use BlueProx-
imity++ with only Bluetooth-signal-strength-based co-presence detection. Those
in group II were required to use BlueProximity++ with contextual and Bluetooth-
signal-strength-based co-presence detection. The choice of co-presence detection
schemes was set up via the configuration user interface. During the second round,
the preference of co-presence detection schemes was toggled to switch to the other
group. The participants were asked to try responding to all access control events by
indicating ground truth via the notifications on mobile devices.

Procedures: The user study was organized in two rounds (roughly one week for
each round), and three face-to-face meetings were arranged with different purposes:

• Orientation meeting : Before the 1st round, the participants were asked to
sign the consent form, and fill in the demography questionnaire anonymously.
Then we helped the participants setup BlueProximity++ on their devices, and
guided them to familiarize the usage of BlueProximity++.

• First post-test meeting : After the first round, the participants were asked to fill
in the post-test SUS questionnaire about their experience during the previous
week. The group ID was attached in each questionnaire. Then we gathered the
history data of access control events and feedback from the participants. Fi-
nally, as the setup procedure for the second round, we switched the preference
of co-presence detection schemes in their configurations.

• Second post-test meeting : After the second round, the participants were asked
to fill in another post-test SUS questionnaire. Same as in the previous meet-
ing, we gathered history data from the participants. Additionally, they were
asked to fill in the comparison questionnaire to compare the perceived usability
between the two rounds.

• After the user study, we additionally asked the participants to provide their
overall feedback via the open-ended questionnaire.

Support: During the user study, we provided technical support via email or in
person, responding to participant feedback promptly. We met with the following
major technical issues:



51

• Incompatibility with environment : BlueProximity++ was designed for all Debian-
based Linux distributions, but was actually implemented and tested on Ubuntu
12.04 only. It had not become an issue until we met with a variety of Linux dis-
tributions and desktop systems on participants’ own computers. For instance,
one of the participants used Gnome 3 desktop where gnome-screen-saver sup-
port (the built in interface to trigger screen lock) was deprecated. We fixed
this issue by integrating another DBus command, supporting a broader range
of desktop systems. Incompatibility was fixed during the head of the first
round.

• Internet connectivity : Some participants had problems when network connec-
tion was disrupted. The communication channel between T and D is essential
for transmitting both context scan results as while as user responses. In case
of disconnection, the results of contextual co-presence would be always false
negative (i.e. screen stays locked when nearby).

• Suspension: Originally, terminal suspension was not taken into account when
designing BlueProximity++. However, as a participant reported, the appli-
cation became inactive after the laptop recovered from suspension. We found
that the locked/unlocked state became inconsistent because the power man-
ager had ignored the pending lock/unlock commands in suspension, but the
state boolean was changed after triggering lock/unlock commands in our im-
plementation. We fixed this issue by adding a periodic detection of screen
state to synchronize the screen state after recovering from suspension.

9.4.2 Results

SUS scores: The SUS scores of using BlueProximity++ with the two different
schemes of co-presence detection are summarized in Table 12. And the distributions
are visualized in Figure 22. We observed a large variance of SUS score among
different participants. The SUS score average for both schemes are slightly under
the required level beyond which the system is considered easy to use for both cases.

As summarized in Table 12, the SUS scores for the two co-presence detection schemes
are quite close. We used the Wilcoxon rank-sum test to estimate the similarity. The
difference was not statistically significant (Z = 0.49, p = 0.63). The similarity of
usability is also observed in the participants’ responses to the comparison question-
naire: four preferred the simple scheme based on Bluetooth RSSI only, five preferred
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the advanced scheme combined with context comparison, and one remained neutral.
With these results, we conclude that there is not sufficient evidence to conclude that
the two schemes resulted in different perceived usability.s

Table 12: SUS scores for the two co-presence detection schemes

Scheme: Scheme:
Bluetooth RSSI only Context comparison + Bluetooth RSSI

mean (std dev) mean (std dev)

Average SUS score 67 (23) 63 (22)

Figure 22: SUS score distribution

Comparison with ground truth:

BlueProximity++ provides the functionality to collect ground truth as part of cor-
rective feedback (as described in Section 9.1). Table 13 shows how the two co-
presence detection mechanisms performed in relation to the ground truth. We do
not report true positive/true negative figures because in the post-study debriefing
several participants indicated that they provided ground truth response only when
the access control decision was incorrect. To compare the two co-presence detection
methods, we consider the overall number of incorrect decisions, i.e., we compare the
proportion of false negative and false positive decisions across all participants. Using
Z-test for two population proportions, we found that the differences between the two
mechanisms are not significant (at p < 0.05) which is in line with the user percep-
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tions as we saw above. However, the initial technical problems (cf. Section 9.4.1)
would have impacted the ground truth information.

Table 13: Comparison with ground truth

BlueProximity++ #Total #FP(%) #FN(%)

Scheme: Bluetooth RSSI only 832 77(9.25%) 86(10.34%)
Scheme: Context comparison + Bluetooth RSSI 774 64(8.27%) 96(12.4%)

Z-test 2 population proportions Z=0.7 Z=-1.3
p=0.48 p=0.19
(p>0.05) (p>0.05)

9.4.3 Qualitative Insights

By summarizing the responses of the open-ended questionnaires, we got the following
qualitative insights:

Energy consumption: During the user study, six of ten participants did not notice
any difference in battery usage of their Android devices compared with their regular
usage without BlueProximity++. Two participants claimed their perceived higher
battery usage. And the remaining two indicated their lack of battery usage baseline
for comparison.

Locking/unlocking policies: One participant reported that he prioritizes zero-interaction
de-authentication rather than authentication: “I would think it could be nice to au-
tomatically lock (and only lock) the screen when mobile is going away.”. Another
participant sharing an office with four other colleagues expected shorter time de-
lay before triggering the locking events: “I feel that I would like the laptop to lock
earlier than it does now so that the app can be used even in a somehow crowded
environment. At the moment the laptop locks when I’m a bit too far for my lik-
ings”. Although participants could tune up the relevant thresholds to finally change
the physical distance at which locking and unlocking events are triggered, it would
be a better solution to adopt an online classification model trained and updated
periodically to comply with personal preferences.

Comparing with password-based authentication: Four participants prefer zero-interaction
authentication than unlocking a PC screen with passwords, while three prefer using
passwords than zero-interaction authentication. And the remaining three thought
that both methods are needed. One participant commented: “my mother and sister
always leave their mobile phone somewhere, and it could be easily taken and used
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to unlock their computer without them knowing it if someone wanted to”. The only
female participant claimed her inconvenience at home where she did not always
take the device with her “usually the locking would trigger when I wandered into a
different room with my laptop at home and forgot to bring my mobile device with
me”. Previous research also revealed that people do not always carry phones with
them [DWF+11]. These observations provided another insight that the prevailing
wearable devices with sensing capabilities (e.g., smart watches, glasses, wristbands,
or rings) could be the better candidates for ZIA.

9.4.4 Design Improvements

We made several improvements of BlueProximity++ on the basis of the user study
results. The remarkable changes are described as blow.

Bluetooth channel for context data: Due to the Internet connection issue,
we decided to use Bluetooth as an alternative channel in addition to the AMQP
channel via a proxy. In the improved design, access control event notifications as
well as context scan results are sent on both channels, when both T and D ar inside
the working range of Bluetooth (normally 10m).

Fine-grained control of co-presence detection: As mentioned in Figure 20
of Section 9.3, we designed a standalone tab “Context Setting” with a group of
radio buttons. The default option remains the same. Users are allowed to disable
the contextual co-presence detection temporarily for a given period or until D is
reachable (in case of network failure). We also provide two baselines in context
setting: the fallback co-presence detection with Bluetooth RSSI only via the “Disable
permanently” button, and completely disabling Zero-Interaction Authentication via
the “Pause” button.

10 Evaluation

Our approach using contextual co-presence detection with multiple sensor modalities
to enhance ZIA satisfies the preset requirements in Section 4:

(i) Our approach was designed and proved to be more secure than existing so-
lutions using single modalities. In our solution, ZIA gets additional security
benefits by fusing multiple sensor modalities (as in Section 7); and the small-
scale user study indicates similar improvement of security level(Section 9.4).
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(ii) Our approach brought a comparable level of usability, retaining the benefit of
ease-to-use from ZIA (Section 7, 9.4).

(iii) Our approach is applicable to a variety of ZIA scenarios. It was designed for
users with various commodity computing devices.

11 Conclusion and Future Work

We presented an approach - using contextual co-presence detection with multiple
sensor modalities - to strengthen ZIA models against relay attacks without sacri-
ficing the usability benefits. We compared the performance of various single sensor
modalities (audio, WiFi, Bluetooth, GPS), and proved the improvement of security
level by fusing multiple sensor modalities. We also implemented a demonstrative
ZIA system augmented with our contextual co-presence approach, and evaluated
the performance in a user study.

We plan to launch a larger-scale user study in the near future. We will use the
lessons learned from the recent user study, make the system more robust to the
diverse Linux platforms and Internet connection exceptions. We will also maintain
a real-time feedback mechanism for the future user study by recording each user’s
ground truth responses on the server. We will become more responsive to user
inactivities when we find limited ground truth responses from the server-side record.

For the development of contextual co-presence models: we built the demonstrative
system with the global classification model, which inevitably annoys users with dif-
ferent preferences and in different application scenarios. So we plan to adopt a per-
sonalized training model to the system. The model will be trained on-line with daily
ground truth responses from the user to make it adaptive to personalized user pref-
erences. We also plan to incorporate support for sensors in our system, for example,
using Sensordrone [Sen] and other sensors such as accelerometers. And incorporat-
ing contextual co-presence detection into de-authentication would be another good
try for our next step. This feature is requested by some users, to improve security
by enforcing T to lock when T and D are in proximity but in different environment
(e.g. T is left inside a room and D is taken outside but still being nearby).
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Appendices

A BlueProximity++: Data Flow Diagram

The data flow diagram provides an overview of the system-wide data flow in Blue-
Proximity++. The regular rectangles represent the entities as data source or sink;
the round-cornered rectangles represent the processes operating on or transporting
data; and the arrows represent the directional data flows. More details are as follows:

• The data flows between User and Config Files are transient procedures to get
user preferences as well as to bind T and D by exchanging meta information
via a Bluetooth connection. As a result of the binding process, D and T share
a key and agree on a “channel identifier” to uniquely identify that D-T channel.

• The routine data flow between T and D via the proxy server are handled by
Network Connection. Such data flow is tagged with the channel identifier and
encrypted using the previously agreed key.

• Co-ordinator at T triggers a new context scan by sending Scan Start Signal
to Context Scan process at T and to the Context Scan process at D (via
Network Connection and Co-ordinator at T ). The Compare Context process
gets the resulting context info from both T and D as input, and produces
the comparison result for the Co-ordinator at T , which together with the
information from Config File is used by Make Lock/Unlock Decision process
for access control decisions.

• Co-ordinator at T records lock/unlock events in its local Database, and sends
Feedback Signal to D for user notification and responses. Upon receiving
Feedback Signal, Co-ordinator at T fires the Start Prompt Signal ; the ground
truth responses received from User are then routed back to T and stored in
the Database at T .
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B BlueProximity++: Smoothing Bluetooth RSSI

Using BlueProximity [Blu] to lock/unlock the terminal T , we observed that T locks
screen sometimes even though device D was in proximity. Since locking or unlocking
depends on Bluetooth RSSI, we conducted a small experiment to measure its relia-
bility. The idea was to measure the temporal dynamics of Bluetooth RSSI at fixed
distances. We used a Linux laptop (Thinkpad X230, Ubuntu 12.04) as T which is
bound to a smartphone (Samsung I9195, Android 4.2.2) as D to run the application.
T and D both support Bluetooth 3.0. We fixed a distance 1m between T and D

to observe the fluctuation of Bluetooth RSSI of D that T can measure during three
minutes.

Figure 23 shows the results of our experiment. Given a fixed time-window, for
example within 1 minute, we observed some peaks. For instance, if we take -6dB
as the locking threshold, from 60 to 120 second, RSSI levels are almost above -6dB
except some peak points at -13dB and -9dB.

Figure 23: Bluetooth RSSI for 1m: raw measurement.

According to related work [Gow12, Dar12], Bluetooth signal is considered sensitive
to many physical factors such as shadow-fading (e.g. with water or human body
as obstacles), multi-path fading (e.g. in a long and narrow space), and antenna
polarization. Instead of circumventing such physical factors, we attempted to miti-
gate the fluctuation by smoothing RSSI values of D that T can measure to reduce
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fluctuation. Our algorithm for smoothing RSSI is described as follows. T runs the
algorithm when a new RSSI (denoted by S) is measured.

(1) Eliminating a suspicious outlier: If the difference between S and the previous
RSSI Sprev goes beyond an empirical threshold δ, T consider S suspicious and
uses Sprev as the current RSSI. Otherwise, T assigns S to Sprev.

(2) Calculating the average: T calculates the mean of a buffer B (with size of W ,
including Sprev and the previous (W−1) RSSIs). The result is denoted by Smean.

(3) Selecting from the candidates: T selects the maximum between Sprev and Smean
as the smoothing result at this moment.

Algorithm 3 Smoothing a new Bluetooth RSSI of D measured by T
Require: global W , δ, B, Sprev, Ssus

procedure SmoothRSSI(S)
if B is empty then

Sprev ← S, Ssus ← 0

else if S − Sprev ≤ δ then
if Ssus = 0 then

Ssus ← S

else
Sprev ← S, Ssus ← 0

else
Sprev ← S, Ssus ← 0

if B is full then
remove the oldest element from B

append Sprev to the end of B

Smean ← mean of B

Sret ← max(Sprev, Smean)

return Sret

Algorithm 3 explains the details of smoothing the Bluetooth RSSIs of D measured
by T . B is the buffer array of previous RSSIs with size of W . δ is the threshold
for verifying outliers. S is the current raw RSSI of D measured by T , Sprev is the
previous RSSI after eliminating outliers, and Ssus is the candidate of RSSI outlier.
Smean is the resulting average of buffer. Sret is the final result of smoothing the
current RSSI.
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Figure 24 shows our smoothing results (the green curve) with the empirical param-
eters W = 5, δ = −6. Intuitively, the green curve is more smooth that the red curve
for raw RSSI values. For every 5-second window, the peaks are closer to the mean of
RSSI values. Our locking/unlocking based on RSSI benefits from this improvement.

Figure 24: Bluetooth RSSI for 1m: improved measurement.
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C User Study Questionnaires

1. Consent form

User Study Informed Consent Form 

 

You have been selected to participate in a demonstration of a screen lock application.                           

Through this demonstration, we hope to collect user responses about positive and negative                         

screen lock events in real life. 

Should you choose to participate, you will be asked to complete the tasks that we will or                                 

have described to you to the best of your abilities. This will include taking the Android                               

device with you, giving responses once you are notified, and unlocking screen via your                           

Android device instead of typing password. 

Your identity will be completely confidential. Only cursory information about your identity                       

(such as gender, age group, etc.) will be used. Your name will not be revealed without your                                 

consent. 

Your data (nearby WiFi, Bluetooth devices, and short bursts of ambient audio) that the app                             

collected will be anonymized and used for our research. Data is available for inspection                           

upon request. 

Copies of this form are available upon request. 

 

Signing below indicates that the participant has read, understands, and agrees to the                         

terms stated above. 

 

Signature of Participant Date 

________________________                                                ________________________   
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2. Demography questionnaire

Pre-Test Questionnaire : 

 

1. Age           : __________________________ 

2. Gender   : M   F 

3. Nationality: __________________________  

4. What academic program are you enrolled in? ____________________________ 
 

5. At which of the following level are you studying at present? 
[  ] Undergraduate   
[  ] Graduate                            
[  ] Ph.D                                

 

6. On a scale of 1 to 10, how would you rate yourself with respect to your computer skills, 1 being 
a novice and 10 an expert? 

             
 
 

7. How often do you use mobile devices (such as mobile phones)? 
[  ] Daily                  
[  ] Several times a week   
[  ] Once a week               
[  ] Less than once a week  
 

8. How often do you use a laptop or desktop computer? 
[  ] Daily                  
[  ] Several times a week   
[  ] Once a week               
[  ] Less than once a week  

 
9. Do you lock your laptop or desktop with a password:  

                     Yes No  

 
10. How concerned you are about the security of your laptop or desktop? 

               [  ] Very much  
               [  ] Somewhat 
               [  ] A little 
               [  ] Not at all 

 
 
 

10 9 

 

8 7 

 

6 5 

 

4 3 2 1 
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3. Post-test SUS questionnaires

Post-Test Questionnaire – System I (the first unlocking mechanism used) 
 

 
                    Strongly     Strongly  
                    disagree     agree 

 
1. I think that I would like to  
   use this system frequently  

     
2. I found the system unnecessarily 
   complex 

     
 
3. I thought the system was easy 

   to use                        
 
 

4. I think that I would need the 
   support of a technical person to 
   be able to use this system  

 
 
5. I found the various functions in 

   this system were well integrated 
     
 

6. I thought there was too much 
   inconsistency in this system 
     

 
7. I would imagine that most people 
   would learn to use this system 

   very quickly    
 
8. I found the system very 

   cumbersome to use 
    
 

9. I felt very confident using the 
   system 
  

 
10. I needed to learn a lot of 
   things before I could get going 

   with this system    
 
 

Other Comments: 
 
_____________________________________________________________________________ 
 

_____________________________________________________________________________ 
 
_____________________________________________________________________________ 

 
_____________________________________________________________________________ 

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5  
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Post-Test Questionnaire – System II (the second unlocking mechanism used) 
 
 
                    Strongly     Strongly  
                    disagree     agree 

 
1. I think that I would like to  
   use this system frequently  

     
2. I found the system unnecessarily 
   complex 

     
 
3. I thought the system was easy 

   to use                        
 
 

4. I think that I would need the 
   support of a technical person to 
   be able to use this system  

 
 
5. I found the various functions in 

   this system were well integrated 
     
 

6. I thought there was too much 
   inconsistency in this system 
     

 
7. I would imagine that most people 
   would learn to use this system 

   very quickly    
 
8. I found the system very 

   cumbersome to use 
    
 

9. I felt very confident using the 
   system 
  

 
10. I needed to learn a lot of 
   things before I could get going 

   with this system    
 
Other Comments: 
 

_____________________________________________________________________________ 
 
_____________________________________________________________________________ 

 
_____________________________________________________________________________ 
 

_____________________________________________________________________________ 

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5  
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4. Comparison questionnaire

 

Post-Test Questionnaire – Comparison 
 
 
Which system did you prefer? 

       System I  
 
       System II 

 
 
Other Comments: 
 

_____________________________________________________________________________ 
 
_____________________________________________________________________________ 

 
_____________________________________________________________________________ 
 

_____________________________________________________________________________ 
 
_____________________________________________________________________________ 

 
_____________________________________________________________________________ 
 

_____________________________________________________________________________ 
 
_____________________________________________________________________________ 

 
_____________________________________________________________________________ 
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5. Open-ended questionnaire

Please provide as detailed responses as you can. Thanks! 

1. Do you feel that the app meets your security needs? 
 
 
 
 

2. Did you notice any difference in battery consumption when you were using the app 
compared to earlier? 

 
 
 
 

3. What did you like most about the app? 
 
 
 
 

4. What did you like the least? 
 
 
 
 

5. When we have a new version of the app, would you want to try it out? 
 
 
 
 

6. Do you think the app are better than using passwords? 
 
 
 
 

7. Were there situations where you wanted to unlock your desktop/laptop, but your 
phone was not near you or out of power? 
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