

Information Security Research and Education at Aalto

N. Asokan http://asokan.org/asokan/ @nasokan

About me

Professor, Aalto University, from Aug 2013 Professor, University of Helsinki, 2012-2017 IEEE Fellow (2017), ACM Distinguished Scientist (2016) Associate Editor-in-Chief, <u>IEEE Security & Privacy</u> (2017)

Previously

Nokia (14 y; built up Nokia security research team) IBM Research (3 y)

https://asokan.org/asokan/ for more background

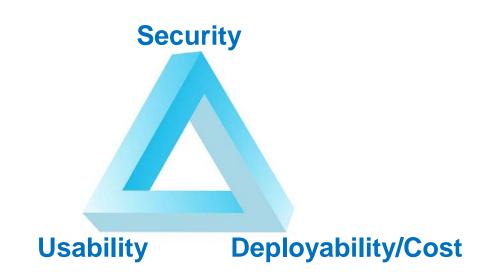
Secure Systems Group

Prof N. Asokan

Professor, Department of Computer Science Director: Helsinki-Aalto Center for Information Security http://asokan.org/asokan/

Prof Tuomas Aura

Professor, Department of Computer Science Director: SECCLO joint degree program https://people.aalto.fi/tuomas_aura



Dr Andrew Paverd

Research Fellow, Department of Computer Science Deputy Director: Helsinki-Aalto Center for Information Security https://ajpaverd.org

Secure Systems Group

How to make it possible to build systems that are simultaneously easy-to-use and inexpensive to deploy while still guaranteeing sufficient protection?

Research

Building systems that are secure, usable, and deployable

Current major themes

Platform Security

• How can we design/use pervasive hardware and OS security mechanisms to secure applications and services?

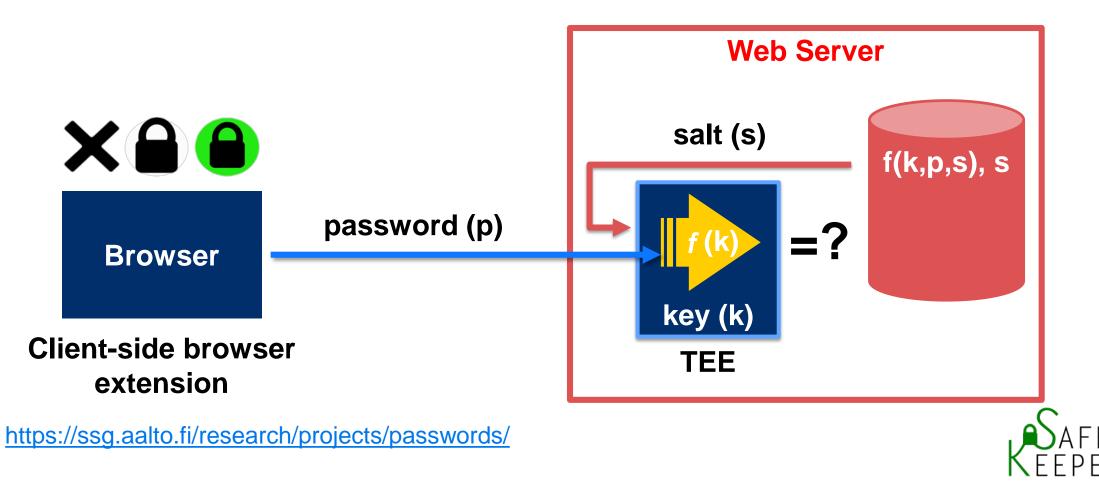
Machine Learning & Security

• Can we guarantee performance of machine-learning based systems even in the presence of adversaries?

Research: Platform Security

Platform security: overview

Applications of platform security


• Example: protecting password-based web authentication systems

Novel platform security mechanisms

- Examples:
 - Linux kernel hardening
 - Hardening embedded systems (C-Flat and HardScope)

SafeKeeper: Protecting Web Passwords

How can we use widely available trusted hardware to deter password database theft and server compromise?

Linux kernel hardening

What vulnerabilities exist in the Linux kernel? How to mitigate them?

Randomization can't stop BPF JIT spray

https://www.blackhat.com/eu-16/briefings.html# randomization-cant-stop-bpf-jit-spray

Preventing reference counter overflows and pointer bound violations

Runtime Attacks

Run-time attacks still a major threat for PCs, mobile and embedded devices

Software written in memory unsafe languages such as C/C++

• Suffer from various memory-related errors

Memory errors may allow run-time attacks to compromise program behaviour

- Control-flow hijacking / code injection
- *Return-Oriented Programming* (ROP)
- Non-control-data attacks
- Data-Oriented Programming (DOP)

https://ssg.aalto.fi/projects/embedded-systems-security/

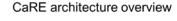
12

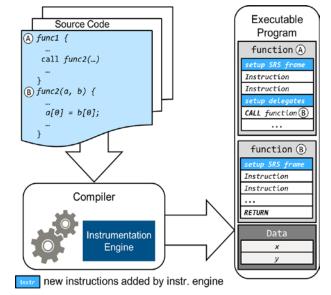
Hardening Embedded Systems

C-FLAT

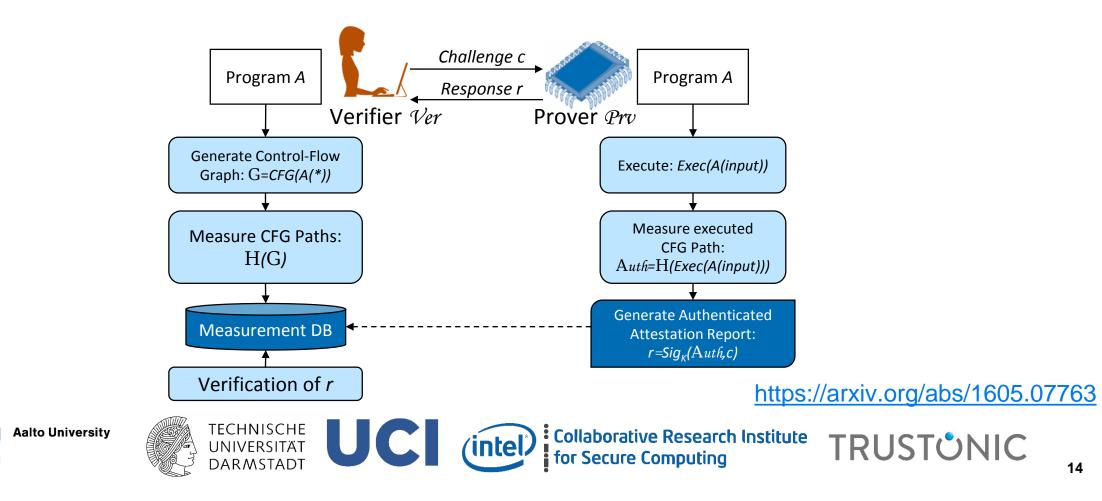
• Control-flow attestation for embedded devices

CFI CaRe


• Hardware-supported call and return enforcement on TrustZone-M


HardScope

• Thwarting DOP attacks with hardware-enforced scoping


Control-Flow Attestation

How can a trusted verifier learn about run-time attacks and dynamic behavior of an embedded device?

- Current *remote attestation* schemes measure only integrity of program binary
- Control-flow and data-oriented attacks corrupt runtime state of program

C-FLAT: Attestation for Run-time Behavior (high-level idea)

Trace and record control flow of prover and aggregate measurement in *hash-chain*

Run-time Scope Enforcement (high-level idea)

Reduce effects of attacks that corrupt data by enforcing variable visibility rules at run time

Challenges:

- Lexical scope of variables used only in static checks by compiler
 Scope information not typically available at run time
- Granularity of enforcement, module-level fault isolation not sufficient
 → subjects functions, objects typed data in memory
- Context sensitive access, distinct function invocations must operate with different rules

 pointers may be legitimately passed down (and up) call chain
- Pervasiveness, ability to mediate all memory accesses
 → enforcement must the efficient

HardScope: Hardware-assisted Run-Time Scope Enforcement

Generic architectural extension enabling hardware-assisted run-time scope enforcement

HardScope consists of:

- Hardware-component for managing run-time access rules
- 6 new instructions configure HardScope-hardware with access rules
- Rule-enforcement added to load / store
- Compiler-extension that instruments software to use HardScope hardware

Enables flexible adjustment of enforcement granularity at instrumentation time

• Module-level \rightarrow Function-level \rightarrow Block-level (e.g. for-loop, if-else-statement block)

Implementation

Prototype on *PULPino* SoC on *ZedBoard* FPGA

• Instruction set extension integrated into open-source RISC-V processor

Toolchain support:

- Automatic instrumentation via compiler plug-in integrated into RISC-V GCC toolchain
- Software simulation of RSE-enabled RISC-V processor integrated into Spike simulator

Minimal performance impact on CoreMark embedded benchmark

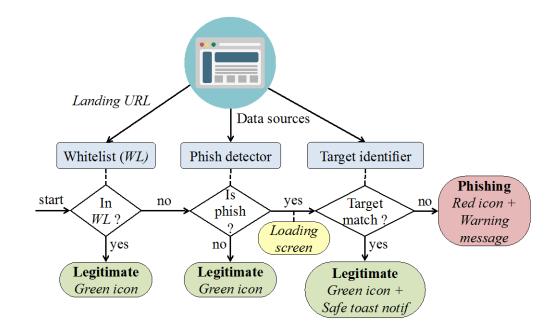
Incurs only ~3% overhead

https://arxiv.org/abs/1705.10295

Research: ML & Security

Machine learning and Security

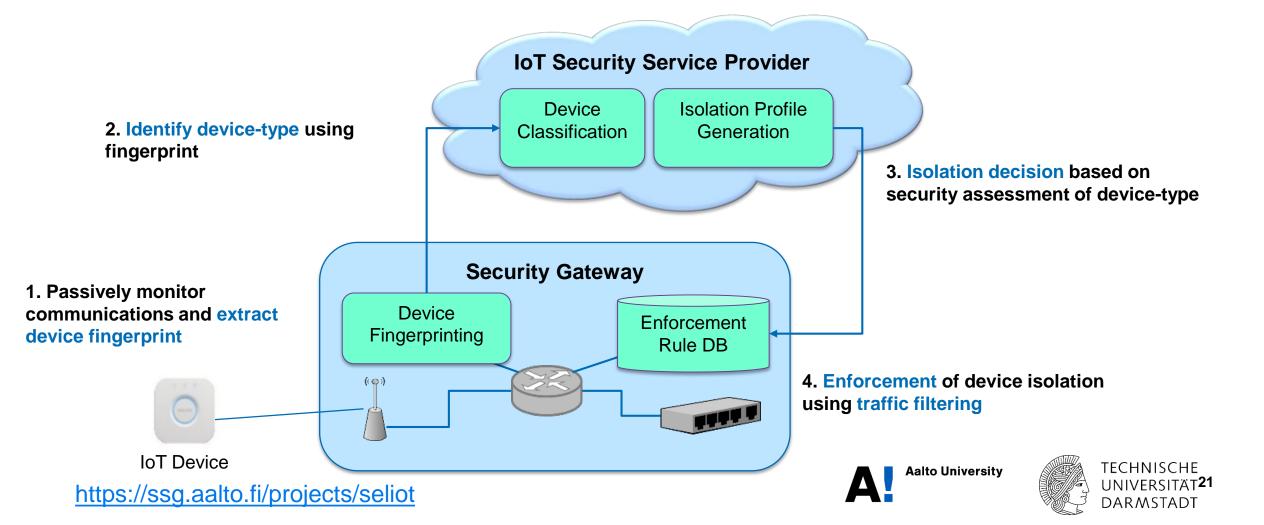
Machine learning for security and privacy

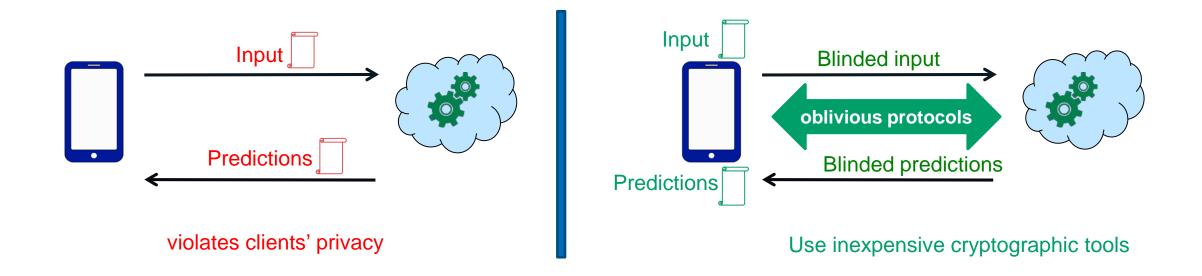

- Examples:
 - Fast client-side phishing detection (off-the-hook)
 - Detection of vulnerable/compromised IoT devices (IoT Sentinel and DÏoT

Security and privacy of machine-learning based systems

- Examples:
 - Privacy-preserving neural network predictions (MiniONN)
 - Model stealing: attacks and defenses

Fast client-side Phishing Protection


How to improve phish detection by modeling constraints on phishers?


IoT Sentinel: Automated device-type identification

How to protect smart home networks from vulnerable IoT devices?

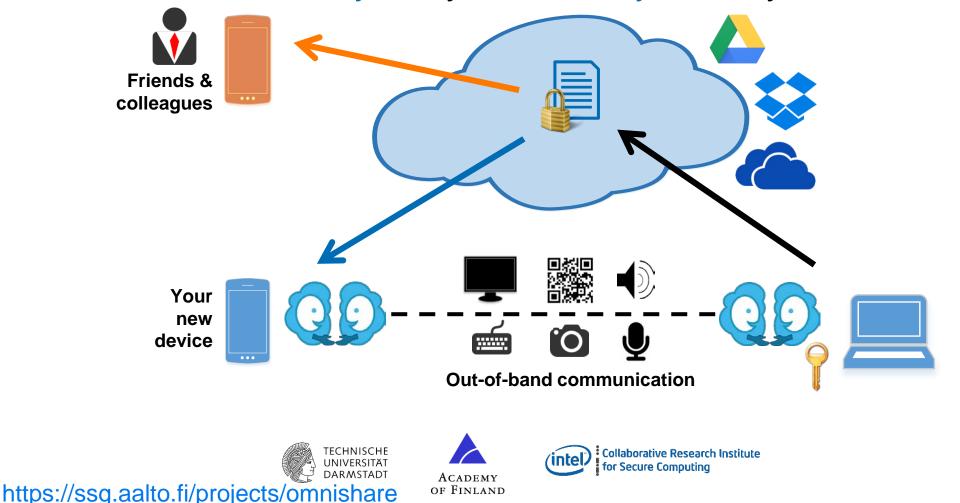
Privacy-preserving Neural Networks

How to make cloud-based prediction models preserve privacy?

MiniONN (ACM CCS 2017)

https://eprint.iacr.org/2017/452

Research: Other


Building systems that are secure, usable, and deployable

Skip to Education

Skip to summary

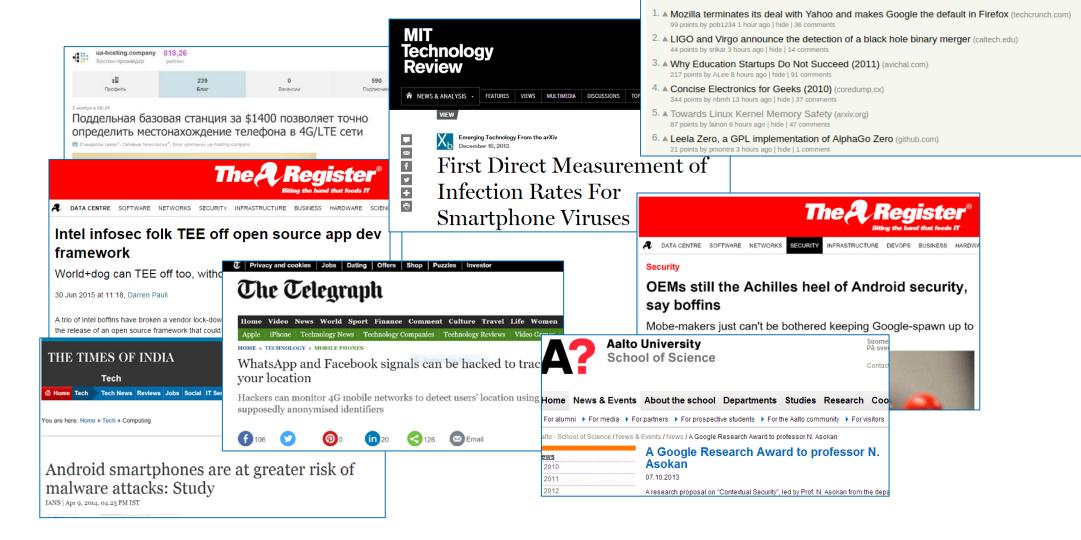
OmniShare: Secure Cloud Storage

How can you share your data securely with anyone you like, anywhere you like?

Current themes: Emerging topics

Distributed consensus and blockchains (theory, applications) [AoF BCon, ICRI-CARS]

• Can hardware security mechanisms help design scalable consensus schemes?


Securing IoT (scalability, usability) [AoF SELIOT]

• How do we secure IoT devices from birth to death?

Stylometry and security [HICT scholarship]

• Can text analysis help detect deception?

Media coverage of our research

Y Hacker News new | comments | show | ask | jobs | submit

Research Funding (Summary)

Cloud Security Services (CloSer 2016 - 2018)

• Funded by Business Finland (formerly Tekes)

Securing Lifecycles of IoT devices (SELIoT 2017 - 2019)

- Funded by NSF and Academy of Finland (WiFiUS program)
- Aalto (Asokan), UC Irvine (Tsudik), U Florida (Traynor)

Intel Collaborative Research Institute (ICRI-SC 2014 – 2017 & ICRI-CARS 2017 - 2020)

- Secure Computing
- Collaborative, Autonomous and Resilient Systems

Blockchain Consensus and Beyond (Bcon 2017 - 2020)

• Funded by Academy of Finland

Research Institute for Collaborative Autonomous and Resilient Systems

Education

Training the next generation of information security researchers and professionals

Master's Programme in Computer, Communication and Information Sciences -Security and Cloud Computing

> Master's degree programmes	Programme description Get to know us	
 International double degree programmes 		Tuition fees and scholarships Contact information
 Open university 		
 Exchange, JOO and Non- degree studies 	011010001001 100101110110	Degree: Master of Science (Technology). More information.
> MBA studies	011010001001	ECTS: 120 ECTS
Show all	100101110110	Field of Study: Technology and Engineering
Bachelor's Admissions	011010001001	Duration: 2 years, full-time
Master's Admissions Doctoral Admissions	100101110110	Eligibility: An appropriate Bachelor's degree or an equivalent qualification.
Scholarships and Fees	Acquire a world-class education in information security at Aalto University!	Tuition fees & scholarships: Yes, for non-EU citizens. More information
> Studying at Aalto	Studies in Security and Cloud Computing give students a broad	Language of Instruction: English More information.
> About Finland	understanding of the latest and future technologies for secure mobile and cloud computing systems. Students will gain both practical engineering knowledge and theoretical insights into	Organising school/s: School of Science
Admission results	 engineering knowledge and theoretical insights into secure systems engineering, 	Application period: 2017-12-15 - 2018-01-24
 Statistics 	 distributed application development 	

Studies

Study options

> Bachelor's degree programmes

_

http://www.aalto.fi/en/studies/education/programme/security_and_cloud_computing/

SECCLO

Master's Programme in Security and Cloud Computing

(Erasmus Mundus)

Applications: 4.12.2017 – 17.01.2018

secclo.aalto.fi

<u>secclo@aalto.fi</u>

Scholarships available

facebook.com/secclo

Aalto University

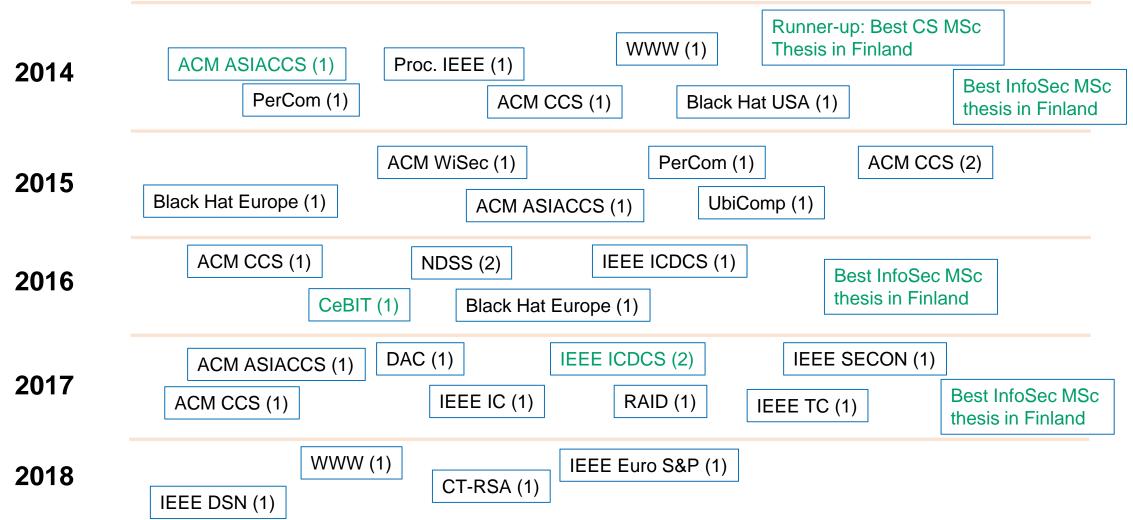
Helsinki-Aalto Center for Information Security (HAIC)

Joint initiative: Aalto University and University of Helsinki

https://haic.aalto.fi/

Mission: attract/train top students in information security

- Offers financial aid to top students in both CCIS Security and Cloud Computing & SECCLO
- Three scholars in 2017; Up to five (expected) in 2018


Call for donors and supporters

 Supported by donations from F-Secure, Intel, Nixu, Huawei, and Aalto University School of Science

InfoSec Research and Education @ Aalto

20+ MSc and BSc theses yearly

https://ssg.aalto.fi/about-us/

Information Security Research and Education at Aalto

N. Asokan

<u>http://asokan.org/asokan/</u>
@nasokan