Machine Learning relies on Sensitive Data

Training machine learning models requires know-how, private data, computational power, etc.
- Service providers want to protect their business advantage (+ intellectual property)

Typical solutions deploy the models to the cloud and allow users to query them
- Users want to protect the privacy of requests
Sensitive data of each party must be protected without compromising functionality

Problems with existing solutions

Existing solutions for protecting user privacy rely on cryptography and oblivious execution:
- Introduce large performance overheads
- Only support limited set of operations
- Require changes to existing models
- No input analysis possible

Solution

- Compute prediction on clear data inside trusted execution environment (TEE)
- Prove confidentiality to client using attestation
- Analyse input without compromising user privacy

Implementation Details

- Use Intel SGX as TEE
- Adopt ONNX standard to support wide range of models
- Store model weights outside the enclave to address memory limitations

Initial Evaluation

- For general matrix multiplication (GEMM), more than 500 times faster than MiniONN