ICRI-CARS

Secure Systems Group, Aalto University

Max Reuter, Samuel Marchal, Andrew Paverd, N. Asokan

Privacy Preserving Deep Neural Network Prediction using Trusted Hardware

Machine Learning relies on Sensitive Data

Implementation Details

- Use Intel SGX as TEE
- Adopt ONNX standard to support wide range of models

Training machine learning models requires knowhow, private data, computational power, etc.

- Service providers want to protect their business advantage (+ intellectual property)
- Typical solutions deploy the models to the cloud and allow users to query them
- Users want to protect the privacy of requests
- Sensitive data of each party must be protected without compromising functionality

trained model

 Store model weights outside the enclave to address memory limitations

service provider

user

Problems with existing solutions

Existing solutions for protecting user privacy rely on cryptography and oblivious execution:

- Introduce large performance overheads
- Only support limited set of operations
- Require changes to existing models
- No input analysis possible

Solution

 Compute prediction on clear data inside trusted execution environment (TEE)

Initial Evaluation

 For general matrix multiplication (GEMM), more than 500 times faster than MiniONN¹

- Prove confidentiality to client using attestation
- Analyse input without compromising user privacy

[1] J. Liu, M. Juuti, Y. Lu, and N. Asokan, "Oblivious Neural Network Predictions via MiniONN Transformations," Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 619–631, 2017.

Aalto University