
PACStack: Authenticated Call Stack

Hans Liljestrand, Thomas Nyman, Lachlan J. Gunn,
Jan-Erik Ekberg, N. Asokan

Pointer Authentication deployed in ARMv8.3-A

• General purpose hardware primitive approximating pointer integrity

• Adds Pointer Authentication Code (PAC) into unused bits of pointer

• PAC: keyed, tweakable MAC from pointer address and 64-bit modifier

• PA keys protected by hardware, modifier decided where pointer used

• Vulnerable to pointer reuse if modifier is not unique to a pointer value

High-level idea

• Authenticated Call Stack (ACS) is a chained MAC of return addresses

• Provide modifier (auth) for the return address by cryptographically
binding it to all previous return addresses in the call stack

• This makes modifier statistically unique to a particular control-flow path,
preventing reuse and allowing precise verification of returns

How can hardware-assistance for Pointer Authentication efficiently and precisely verify
function return addresses and resist reuse attacks without additional hardware?

Mitigation of hash-collisions: authentication token masking

• Challenge: PAC collisions occur on average after 1.253*2b/2 return
addresses (e.g., 321 addresses for b=16)

• Solution: Prevent recognizing collisions by masking each auth with
pseudo-random mask generated using pacib(0x0, authi-1)

Impact on performance in C-language benchmarks

Estimated performance impact based on PA with QARMA cipher
on 1.2GHz ARM core and PA-analogue (4 cycles / PA instruction):

• 0.9% performance overhead in SPEC CPU 2017 benchmarks
(geometric mean, 0.4% without masking)

• 0.5% performance overhead in nbench byte 2.2.3 benchmarks
(geometric mean, <0.3% without masking)

ACS is a chained MAC of tokens authi , i ∈ [0, n − 1] cryptographically bound to corresponding return addresses, reti , i ∈ [0, n], and authn

ret0 ret1

auth0 = HK(ret0, 0) auth1 = HK(ret1, auth0) authn = HK(retn, authn-1)

retn

Attack w/o Masking w/ Masking

Reuse previous auth collision 1 2-b

Guess auth to existing call-site 2-b 2-b

Guess auth to arbitrary address 2-2b 2-2b

Maximum probability of success for different attacks

Comparison: ACS / PACStack vs. shadow stacks

Shadow stacks are precise, but have drawbacks:

• Software shadow stacks suffer from large performance overheads

• A parallel shadow stack / dedicating a register increase performance,
but leave shadow stack vulnerable if its location in memory is known

• Hardware shadow stacks are efficient and secure, but require dedicated,
single purpose support and isolated / integrity protected memory

ACS / PACStack provide probabilistic guarantees, but has benefits:

• Can be instantiated with any MAC, e.g., hardware-assisted utilizing PA

• Very efficient when utilizing hardware-assisted primitives

• No isolated / integrity protected memory (beyond single register)

ACS implementation using PA: PACStack

Two variants:

1. Generate 32-bit auth with pacga instruction and store on stack

2. Generate 16-bit auth with pacib instruction and embed in PAC-bits

• Topmost authn always stored securely in dedicated CPU register

Generalizing ACS to other use cases

Provides efficient authenticated stack using ARM PA that can be used for:

• protecting other stack data, e.g., frame pointer or read-only variables

• frame-by-frame unwinding of the call stack in C++ exceptions

• reusable library for protecting other critical data structures
(e.g., in kernel code, language runtime, applications etc.)

https://pacstack.github.io

Structure of an authenticated pointer

tag/PAC sign ext./PAC virtual address (AP)

reserved bit8 bits VA_SIZE bits

64-bit modifier (M)

PA key (K)HK(AP, M)

3 – 23 bits

general purpose registers

configuration register

