
Secure Systems Group, Aalto University

High-level ideal

Instrument program code during compilation to

• split code up into distinct execution contexts, i.e. the 

‘environment’ of a piece of code, e.g. function instance

• associate each execution context with storage regions, i.e. 

portion of data memory accessed in the execution context

Modify underlying hardware with HardScope instructions to:

• accumulate rules for storage regions associated with the 

current execution context [new storage region instructions]

• track changes of execution context at run-time

[new scope block instructions]

• treat new code activations as separate execution contexts, and 

track dynamic data [new data delegation instructions]

• enforce that each execution context only accesses memory in 

its storage regions [modified load / store instructions]

Motivation

• Variable visibility rules make it less likely to reference 

unintended variables

• Run-time attacks violate assumptions about what data is 

referenced at compile time vs. run-time

• Mechanisms for variable scope enforcement at run-time can 

significantly reduce potential of run-time attacks

Challenges

• Dynamic scope ≠ lexical scope: variable visiblity information not 

typically available at run-time

• Granularity of enforcement: effective compartmentalization 

requires fine granularity for subjects (code) and objects (data)

• Context sensitive access: same piece of code may operate 

under different set of rules depending on where it is called from

• Pervasiveness: efficiently mediate all memory accesses

ICRI-CARS, CloSer, SELIot

HardScope: Protecting Embedded Systems 

against Data-oriented attacks

Thomas Nyman, Ghada Dessouky, Shaza Zeitouni, Aaro Lehikoinen

Andrew Paverd, N. Asokan, Ahmad-Reza Sadeghi

Storage Region Stack

• Enables enforcement without slowing down loads / stores as 

active rules stored at top of stack and cached for fast access

• Overhead from cache management amortized over several 

instructions on execution context change

Benefits of HardScope

• Provides resilience against multiple classes of attacks,

e.g. ROP, DOP

• Granularity of enforcement adjustable,

e.g. module-, function-, code-block- compartmentalization

• Low-overhead, only ~3.2% for function granularity enforcement 

in CoreMark embedded benchmark

https://arxiv.org/abs/

1705.10295

https://github.com/

runtime-scope-enforcement

HardScope PoC integrated in RISC-V 

PULPino SoC on FPGA

• Hardware-component for managing run-time access rules

• Six new instructions added to RISC-V instruction set 

• Compiler plug-in that instruments software for HardScope

High-level overview of HardScope instrumentation & operation

HardScope hardware organization

How can variable visibility rules be enforced at run-time to prevent run-time attacks?

We present HardScope, a novel hardware extension for

Run-time Scope Enforcement in embedded systems


