Secure Systems Group, Aalto University

: Research Institute for Collaborative

ICRI-CARS, CloSer, SELIot (intel®)-

; Autonomous and Resilient Systems CI@r

Thomas Nyman, Ghada Dessouky, Shaza Zeitouni, Aaro Lehikoinen
Andrew Paverd, N. Asokan, Ahmad-Reza Sadeghi

HardScope: Protecting Embedded Systems
against Data-oriented attacks

How can variable visibility rules be enforced at run-time to prevent run-time attacks?

We present HardScope, a novel hardware extension for
Run-time Scope Enforcement in embedded systems

Motivation

« Variable visibility rules make It less likely to reference
unintended variables

* Run-time attacks violate assumptions about what data is
referenced at compile time vs. run-time

* Mechanisms for variable scope enforcement at run-time can
significantly reduce potential of run-time attacks

Challenges

* Dynamic scope # lexical scope: variable visiblity information not
typically available at run-time

» Granularity of enforcement: effective compartmentalization
requires fine granularity for subjects (code) and objects (data)

« Context sensitive access: same piece of code may operate
under different set of rules depending on where it Is called from

* Pervasiveness: efficiently mediate all memory accesses

Storage Region Stack

* Enables enforcement without slowing down loads / stores as
active rules stored at top of stack and cached for fast access

 Overhead from cache management amortized over several
Instructions on execution context change

SRS in Cache Active bank Spare bank
protected <}
memory j
_<.
2.
o — baselimit “base_imit

SRS Controller

HardScope hardware organization

HardScope PoC integrated in RISC-V
PULPIno SoC on FPGA

« Hardware-component for managing run-time access rules

 Six new Instructions added to RISC-V instruction set

« Compiler plug-in that instruments software for HardScope

TECHNISCHE
UNIVERSITAT
DARMSTADT

Aalto University

High-level ideal

Instrument program code during compilation to

» split code up into distinct execution contexts, I.e. the
‘environment’ of a piece of code, e.g. function instance

* assoclate each execution context with storage regions, I.e.
portion of data memory accessed In the execution context

Modify underlying hardware with HardScope instructions to:

» accumulate rules for storage regions associated with the
current execution context [new storage region instructions]

 track changes of execution context at run-time
[new scope block instructions]

* freat new code activations as separate execution contexts, and
track dynamic data [new data delegation instructions]

» enforce that each execution context only accesses memory In
Its storage regions [modified load / store instructions]

Source Code

(A privileged {

call copy(ptr,, ptr,)

¥
unprivileged {

call copy(ptr;, ptr;)

}

NS

—

Compiler

&

RSE
Plug-in

™~
/

%

/ Executable \
v N\
Program M . [A,FT
function ® C __,@
e
2
Instruction : .
ang setup delegates Y Y
CALL function@
|
function
setup SRS frame _
nstruction ||l | e O
Intr‘uton . ptry : n
setup delegates :
[]
CALL function@
function N
©],],
o=
Instruction
X X
Instruction
] y y j
RETURN
D . . . i
I (a) delegation & access permitted =~ (b) delegation & access disallowed
X
y - -
i new instructions added by plug-in *— Privileged control-flow path
3 . - «--» unprivileged control-flow path
/) S‘i memory corruption vulnerability —--» corrupted pointer

High-level overview of HardScope instrumentation & operation

Benefits of HardScope

* Provides resilience against multiple classes of attacks,
e.g. ROP, DOP

* Granularity of enforcement adjustable,
e.g. module-, function-, code-block- compartmentalization

* Low-overhead, only ~3.2% for function granularity enforcement
In CoreMark embedded benchmark

https://github.com/ https://arxiv.org/abs/
runtime-scope-enforcement 1705.10295

