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HardScope: Protecting Embedded Systems
against Data-oriented attacks

How can variable visibility rules be enforced at run-time to prevent run-time attacks?

We present HardScope, a novel hardware extension for
Run-time Scope Enforcement in embedded systems

Motivation

« Variable visibility rules make It less likely to reference
unintended variables

* Run-time attacks violate assumptions about what data is
referenced at compile time vs. run-time

* Mechanisms for variable scope enforcement at run-time can
significantly reduce potential of run-time attacks

Challenges

* Dynamic scope # lexical scope: variable visiblity information not
typically available at run-time

» Granularity of enforcement: effective compartmentalization
requires fine granularity for subjects (code) and objects (data)

« Context sensitive access: same piece of code may operate
under different set of rules depending on where it Is called from

* Pervasiveness: efficiently mediate all memory accesses

Storage Region Stack

* Enables enforcement without slowing down loads / stores as
active rules stored at top of stack and cached for fast access

 Overhead from cache management amortized over several
Instructions on execution context change
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HardScope hardware organization

HardScope PoC integrated in RISC-V
PULPIno SoC on FPGA

« Hardware-component for managing run-time access rules

 Six new Instructions added to RISC-V instruction set

« Compiler plug-in that instruments software for HardScope
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High-level ideal

Instrument program code during compilation to

» split code up into distinct execution contexts, I.e. the
‘environment’ of a piece of code, e.g. function instance

* assoclate each execution context with storage regions, I.e.
portion of data memory accessed In the execution context

Modify underlying hardware with HardScope instructions to:

» accumulate rules for storage regions associated with the
current execution context [new storage region instructions]

 track changes of execution context at run-time
[new scope block instructions]

* freat new code activations as separate execution contexts, and
track dynamic data [new data delegation instructions]

» enforce that each execution context only accesses memory In
Its storage regions [modified load / store instructions]
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High-level overview of HardScope instrumentation & operation

Benefits of HardScope

* Provides resilience against multiple classes of attacks,
e.g. ROP, DOP

* Granularity of enforcement adjustable,
e.g. module-, function-, code-block- compartmentalization

* Low-overhead, only ~3.2% for function granularity enforcement
In CoreMark embedded benchmark
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