
PARTS: Towards pointer integrity using
ARM pointer authentication

Hans Liljestrand, Thomas Nyman, Kui Wang
Carlos Chinea Perez, Jan-Erik Ekberg, N. Asokan

ARMv8.3-A Pointer Authentication

• Embeds and verifies embedded Pointer Verification Codes (PACs):

– Embedded in unused bits of a pointer

– Keyed, tweakable MAC based on address and given modifier

• User-space support in Linux 5.0 with kernel-managed keys

• Used via new PA-specific pac and aut instructions

PACing it up with PARTS 

• Uses run-time type safety to generate modifiers:

– Secure modifiers created based on read-only code section

– Pointer type known both at creation and use

– Modifier not affected by memory copy

• LLVM 6.0 based implementation + Linux RFC patches for PA

Return address protection pacib(ret, funcID║SP)

• Unique function specific identifiers generated at compile-time

• Different function activations distinguished using stack pointer

Code pointer protection pacia(ptr, type)

• Modifier from pointer type (LLVMElementType)

• Pointers signed on creation and verified on use

Data pointer protection pacda(ret, type)

• Modifier from pointer type (LLVMElementType)

• Pointers signed on memory write and verified on memory load

– Allows efficient register use

Implementation challenges

• LLVM backend looses high-level semantics, including pointer type

– Solution: define new intrinsics for pac / aut operations

• Register spilling looses retains no semantics

– Solution: must analyze spills to protect data-pointer spills

• Interoperability with non-instrumented libraries

– Verify and sign pointers to / from non-instrumented code

PARTS performance evaluation 

• Based on estimated overhead of 4-cycles per PA instruction

PARTS, Pointer Authentication for Run-time Type Safety

• Approximates pointer integrity using ARMv8.3-A pointer authentication

• Protects return addresses, code pointers, and data pointers

• Prevents pointer reuse attacks by enforcing run-time type safety

• Modifier can be used to define context for pointer

Pointer reuse

• Vulnerable to pointer reuse when modifiers coincide!
e.g., stack pointer as modifier in GCC / LLLVM –msign-return-address

Structure of an authenticated pointer

tag/PAC sign ext./PAC virtual address (AP)

reserved bit8 bits VA_SIZE bits

64-bit modifier (M)

PA key (K)HK(AP, M)

3 – 23 bits

general purpose registers

configuration register

Challenge: to prevent modifier must be sufficiently unique to value and:

• Secure: Cannot be stored in memory, hence cannot be random
e.g., if securely stored, then why not just store pointer itself?

• Available: Known at both creation and use of pointer
e.g., these could be spatially and temporally disjoint events

• Location independent: Storage location cannot be tied to mod
e.g., must allow memcpy and embedding in other data structures

reuse possible if mod1 = mod2

main {
func1();

func2();
}

func1:
…
autia LR, mod1
ret

func2:
…
autia LR, mod2
ret

0,9

1

1,1

1,2

1,3

1,4

1,5

Num. sort String sort Bitfield FP emul. Fourier Assignment IDEA Huffman Neural net LU decomp.

return address code pointer data pointer all

• Return address and code pointer protection 0.5% overhead (geo.mean)

• Full protection, including data pointers, 19.5% overhead (geo.mean)

https://github.com/pointer-authentication


