Making Speculative BFT Resilient with Trusted Monotonic Counters

Lachlan J. Gunn, Jian Liu, Bruno Vavala, N. Asokan

- Current speculative BFT protocols have a performance-resilience trade-off
- Trusted hardware provides an efficient and secure ordering mechanism
- SACZyzzyva breaks the trade-off: full performance and full fault-tolerance simultaneously

Byzantine Fault Tolerance (BFT)
- Replication of deterministic state machines
- Replicated system looks like one state machine, despite compromised replicas

Zyzzyva
- Speculative BFT:
 - Very fast: no waiting for coordination
- Very simple protocol when no faults occur
 1. Leader sends requests to replicas
 2. Replicas respond immediately
- Any fault triggers non-speculative fallback
- Zyzzyva5 sacrifices robustness for speed
 To tolerate f faults:
 - Zyzzyva: $3f+1$ replicas, slow after 1 fault
 - Zyzzyva5: $5f+1$ replicas, never slow in fast path
- Goal: $3f+1$ replicas, never slow in fast path

Trusted hardware and BFT
- Trusted hardware can increase robustness
- Common primitive: monotonic counter
- New result: tolerating f faults always requires at least one of the following:
 - $2f+1$ replicas with trusted hardware
 - $3f+1$ replicas total

Performance
- We outperform Zyzzyva5 at the same level of robustness
- C++ Implementation of fault-free path for Zyzzyva5 & SACZyzzyva
- Low- and high-latency experiments using Amazon EC2
- Marginal latency increase for additional replicas: <100µs/replica