Misbinding Attacks on Secure Device Pairing and Bootstrapping

Aleksi Peltonen, Mohit Sethi and Tuomas Aura

Misbinding attack: A thinks that it is communicating with E, but is actually communicating with B

- Affects key exchange, secure device pairing and IoT bootstrapping protocols
- Requires E to be dishonest, B can be either honest or dishonest

Known since 1992 (STS, Diffie et al. 1992)
- Different names over time: unknown key-share, misbinding, cuckoo..
- Motivated development of the SIGMA protocols (IKEv1, IKEv2)
- Protocols without authenticated identifiers still vulnerable
- Formal modelling of three protocols with ProVerif: Bluetooth, Wi-Fi Direct and EAP-NOOB
- Confirmed known attacks and discovered a new, **double misbinding** attack

CASE STUDY – Device Pairing with Bluetooth

Authentication by numeric comparison of 6-digit code.

Attack scenario:
User wants to pair devices A and B
1. Attacker makes compromised device B undiscoverable, user selects “B” instead.
2. The code derived by A and “B” is relayed and displayed on E.
3. User compares the codes and accepts.
4. User thinks that A and B are connected. In reality, A and “B” are connected.

Our model detected **five attack variants** for Bluetooth.