

FUNCTIONAL ENCRYPTION ON FPGAs: **MULTI-CORE ARCHITECTURE FOR INNER-PRODUCT COMPUTATION**

Milad Bahadori and Kimmo Järvinen

Department of Computer Science, University of Helsinki

FUNCTIONAL ENCRYPTION

- Traditional encryption is all-or-nothing: Anyone who has the secret key sk obtains the entire plaintext x from the ciphertext c = Enc(x) and the others get nothing at all.
- Functional Encryption (FE) provides more finegrained control: It is possible to derive a decryption key sk_f that allows to compute f(x) from c without leaking anything else about x.

ARM Cortex-A9 cores (our prototype uses Avnet ZedBoard)

- Multi-core design: The architecture includes parallel cores in order to exploit the inherent parallelism in MIFE encryptions and decryptions and three-level memory structure for efficient inter-operation between the cores and SW
- Cores are optimized for large integer modular arithmetic: Each core uses Montgomery modular arith-
- Multi-Input FE (MIFE) allows n users to independently encrypt input vectors $\mathbf{x}_i = (x_{i,0}, \ldots, x_{i,m-1})$ so that an evaluator can decrypt $f(\mathbf{x}_0, \ldots, \mathbf{x}_{n-1})$.
- Efficient FE schemes exist only for limited functionalities: In this work, we focus on MIFE for inner**products** that supports $sk_{\mathbf{v}}$ for specific $\mathbf{y} = (\mathbf{y}_0, \dots, \mathbf{y}_{n-1})$ with $\mathbf{y}_i = (y_{i,0}, \ldots, y_{i,m-1})$ that allows computing

$$f_{\mathbf{y}}(\mathbf{x}_0, \dots, \mathbf{x}_{n-1}) = \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} x_{i,j} \cdot y_{i,j}$$

from the ciphertexts $\mathbf{c}_i = \operatorname{Enc}(sk_i, \mathbf{x}_i)$ (see the figure below).

metic optimized for hardwired DSP multipliers of the FPGA.

- MIFE schemes are computationally demanding: We focus on the MIFE scheme from [Abd18] instantiated with the FE scheme for inner-products from [Agr16].
 - Based on additively homomorphic Paillier encryption. _____
 - Does not require cryptographic pairings. _____
 - Main operations are exponentiations in \mathbb{Z}_{N^2} where N is _____ an RSA-like modulus (e.g., of size $\kappa = 2048$ bits). Both encryption and decryption are heavy; especially, de-_____

 $\bigcirc \bigcirc$ L2_DMEM # of Cores per Cluster: N ●●● L3_DMEM Parallel DMA Blocks # of total Cores: $(M \times N)$

RESULTS

• Architecture compiled for Xilinx Zynq-7020 SoC: 12 cores (M = 6, N = 2) fit into the FPGA and measurements from ZedBoard with $\kappa = 2048$ give the timings below.

OPERATION		LATENCY	(clocks)	TIME
		FPGA@122MHz	ARM@667MHz	(ms)
Enc	Small $(m = 16)$	43863516	270504	360
	Medium $(m = 32)$	65795274	399126	540
	Large $(m = 64)$	131590548	784992	1080
Dec	Small $(n = 4, m = 16)$	45298890	77269998	487
	Medium $(n = 16, m = 32)$	93706204	310868766	1234
	Large $(n = 64, m = 64)$	299424756	1249220622	4328

- **Future work:** (a) More expressive functions and additional features (e.g., function hiding) by implementing support for
- cryption (inner-product computation), which is computed by the evaluator alone, gets expensive if n is large.
- \Rightarrow There is a need for hardware support

ARCHITECTURE

• **HW/SW codesign:** The architecture is designed mainly for Xilinx Zynq SoCs that combine FPGA resources with

cryptographic pairings; (b) Use of secure elements for added security and efficiency.

REFERENCES

[Abd18] M. Abdalla et al.: "Multi-input functional encryption for inner products: Function-hiding realizations and constructions without pairings." In CRYPTO 2018. [Agr16] S. Agrawal et al.: "Fully secure functional encryption for inner products, from standard assumptions." In CRYPTO 2016.

Contact: {milad.bahadori, kimmo.u.jarvinen}@helsinki.fi

