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“Rather than love, than money, than fame, give me truth.”

Henry David Thoreau

“So many people live within unhappy circumstances and yet will not take the initiative
to change their situation because they are conditioned to a life of security, conformity, and
conservatism, all of which may appear to give one peace of mind, but in reality nothing is
more dangerous to the adventurous spirit within a man than a secure future. The very basic
core of a man’s living spirit is his passion for adventure. The joy of life comes from our
encounters with new experiences, and hence there is no greater joy than to have an endlessly
changing horizon, for each day to have a new and different sun.”

Christopher McCandless
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Abstract

With the spread of social networks and their unfortunate use for hate speech, au-
tomatic detection of the latter has become a pressing problem. In this paper, we
reproduce seven state-of-the-art hate speech detection models from prior work, and
show that they perform well only when tested on the same type of data they were
trained on. Based on these results, we argue that for successful hate speech detection,
model architecture is less important than the type of data and labelling criteria. We
further show that all proposed detection techniques are brittle against adversaries
who can (automatically) insert typos, change word boundaries or add innocuous
words to the original hate speech. A combination of these methods is also effective
against Google Perspective – a cutting edge solution from industry. Our experiments
demonstrate that adversarial training does not completely mitigate the attacks, and
using character-level features makes the models systematically more attack-resistant
than using word-level features.
The contribution of this thesis is also resulted in a scientific paper:

• Tommi Gröndahl, Luca Pajola, Mika Juuti, Mauro Conti, N. Asokan. All you
need is “love”: Evading hate speech detection. In Proceedings of the 11th ACM
Workshop on Artificial Intelligence and Security (ACM CCS 2018 workshop:
AISec 2018), in press, Toronto, Canada, October 19, 2018.
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Chapter 1

Introduction

Social networking has changed the way people communicate on-line. While the
ability of ordinary people to reach thousands of others instantaneously undoubtedly
has positive effects, downsides like polarization via echo chambers (Hosseini et al.,
2017) have become apparent. This inter-connectedness of people allows malicious
entities to influence opinions by posting hateful material, also known as hate speech.

Hate speech is not a universal concept. While laws targeting speech seen as
harmful have existed throughout human civilization, the specific term was origi-
nally coined in the US in 1989 to address problems of “harmful racist speech” that
was nonetheless protected in the US (Brennan, Afroz, and Greenstadt, 2011). In 1997,
the European Union defined “hate speech” as texts that “spread, incite, promote or
justify racial hatred, xenophobia, antisemitism or other forms of hatred based on in-
tolerance”.Hate speech can be separated from merely offensive or shocking content
“Burnap:Williams2015”, although this distinction is non-trivial. In this paper, we
denote non-hateful speech as “ordinary speech”.

Typically, hate speech detection is cast as a classification problem. Standard ma-
chine learning algorithms are used to derive a discriminative function that can sep-
arate hate speech from ordinary speech.

Although several hate speech detection mechanisms have been reported in the
research literature (Schmidt and Wiegand, 2017), to the best of our knowledge, there
has so far been no systematic empirical evaluation comparing actual implementa-
tions of proposed models and datasets.

We study five recent model architectures presented in four papers. One archi-
tecture (Zhang Ziqi, 2018) is trained separately on three different datasets, giving
us seven models in total. Six of these distinguish between two classes (Wulczyn,
2017), (Zeerak and Hovy, 2016) (Zhang Ziqi, 2018). One classifies among three, dis-
tinguishing between offensive and non-offensive ordinary speech (Davidson et al.,
2017). Two models are character-based (using character n-grams as features) while
the rest are word-based (using word n-grams or embeddings).

In the original papers, each of the two-class models was evaluated using a partic-
ular dataset. We show that none of the pre-trained models perform well when tested
with any other dataset. This suggests that the features indicative of hate speech are
not consistent across different datasets. However, we also show that all models per-
form equally well if they were retrained with the training set from another dataset
and tested using the test set from the same dataset. This suggests that hate speech
detection is largely independent of model architecture. We also tested each two-
class model on offensive ordinary speech (Jay, 2009), and observe that they tend to
classify it as hate speech. This indicates that the models fail to distinguish between
hate speech and offensive ordinary speech, making them susceptible to false pos-
itives. We experimented with using a transfer learning approach where by using
a pre-trained language model, we fine tuned it for the classification task with each
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dataset, and conducted the same experiments. We show that the results are compa-
rable but do not exceed the baselines.

Prior work has only considered what can be called naive adversaries , who do
not attempt to circumvent detection. We show that all the models are vulnerable to
adversarial inputs. There are many ways of attacking text-based detection models.
A simple attack involves changing the input text so that a human reader will still get
the intended meaning, while detection models mis-classify the text.

We suggest three such alteration techniques, all of which are easily automated:

• word changes;

• word-boundary changes;

• appending unrelated innocuous words.

Implementing two varieties of each attack, we show that all detection models are
vulnerable to them, although to different extents. Combining two of our most effec-
tive attacks, we present a simple but powerful evasion method, which completely
breaks all word-based models, and severely hinders the performance of character-
based models. In addition, this attack significantly degrades the performance of
Google Perspective API, which assigns a “toxicity” score to input text.

In conclusion, the idea of this research is to find the properties of this task (hate
speech detection) with the aim to help future research; we summarize our contribu-
tions as follows:

• The first experimental comparative analysis of state-of-the-art hate speech de-
tection models and datasets 5;

• Several attacks against effective against all models and possible mitigations 6;

• A simple but effective evasion method that completely breaks all word-based
classifiers, and significantly impacts character-based classifiers as well as
Google Perspective 6.4;

• A review of the limitations in current methods, and desiderata for future de-
velopments 7.
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Chapter 2

Background

This chapter contains all the theoretical knowledge required for understanding the
analysis and the concepts which will be describe in the following chapters. We will
begin by describing how text classification tasks are handled in Section 2.1, followed
by the description of the models involved in Section 2.2 and Section 2.3. Models are
evaluated with different metrics, as explained in Section 2.4. In the end, we conclude
an explanation of the basic concept in the machine learning evasion (Section 2.5).

2.1 Text Classification Pipeline

In this section I briefly explain how to the Text Classification pipeline is handle,
based on the work of Korde (Korde, 2012). Text classifiers are important because we
need a way for extracting information from the text, which contains more than the
80% of the information. Usually, the aim of a text classifier is to classify documents
according to predefined categories.

2.1.1 The Pipeline

We can summarize the pipeline as in Figure 2.1.

FIGURE 2.1: Document Classification Pipeline

Documents The first step is the samples collection. In this phase we need to collect
documents, and they can have different origins, such as text file, pdf, html, ...

Pre-Processing In this stage we try to represent the documents in a good manner,
trying to remove all the useless information. Here, common steps are:

• Tokenization: the role of a tokenizer is to transform a sentence from a string to
a list of tokens (e.g. "I love going to the beach" become [’I’, ’love’, ’going’, ’to’,
’the’, ’beach’]);
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• Removing stop words: stop words are terms which occur frequently (e.g. "the",
"a", "and"); these words become insignificant and they can be removed;

• Stemming words: the stemming aim is to convert the words into the canonical
form. (e.g. "books" to "book", "loving" to "love"); usually it is applied to the
tokens.

Indexing Documents are represented by words; in order to reduce the complexity
of the data representation, each document need to be transformed into a document
vector. Usually documents are transformed into vectors of words. A basic represen-
tation is the following: 

T1 .. Tt ci
D1 w11 .. wt1 c1
.. .. .. .. ..

Dn w1n .. wtn cn

 .

Where Ti represents the i-th term (word) in our dictionary, which is made by the
words that we decide to uses for representing a corpus. Dj represent the j-th doc-
ument and cj the label of Dj. About wmn, it is just a weight that represent the m-th
terms in the n-th document. This representation can be done in different ways, such
as boolean (1 if the word is present in the document, 0 if not), or the frequency of the
word, or the TF-IDF, or entropy etc... This representation clearly is a sparse matrix,
and it raise the problem of the high dimensionality; moreover, with these approach
we loose information about the correlation between words: we know if the word is
presented or not (with a weight for the representation), but we do not know its po-
sition(s) in the document, or about its neighbors. Another way for representing the
words and maintaining the relationship is the n-grams representation, where there
is a representation as a sequence of words or characters. For example, in a word
n-gram of size from 1 to 2, if we have the sentence “I am Luca” we will have the
following n-grams: [I, am, Luca, I am, am Luca].

Feature Selection The main aim of the feature selection is to select a subset of fea-
tures from the original representation vectors. The algorithm works by preserving
the features which have a high score, according to a pre-defined metrics. In this way
we reduce the feature space, which has an high dimensionality. This help the scal-
ability, efficiency and accuracy of a text classifier. There are different techniques for
choosing features, such as the text frequency (e.g. maintain all those word which
frequency is greater than X), chi-square.

Classification Classification algorithm can be summarized in three main cate-
gories: supervise, unsupervised and semi-supervised learning. There are a lot of
techniques that can help in the classification problem, such as Decision Trees, K-
nearest Neighbor (KNN), Support Vector Machines (SVM), Neural Networks.

Performance Evaluation Metrics are useful techniques for evaluating algorithms
or, like in this field, models, and they allow to understand the performances of a
classifier and the comparison with others. Tons of metrics are available in the liter-
ature, and each one try to catch the performance of the model based on a specific
aspect. This mean that the choice of the metric will influence how you weight the
importance of different characteristics in the results.
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2.2 Models Description

2.2.1 Logistic Regression

In this subsection I will explain the Logistic Regression, based on “Logistic Regres-
sion: A Self-Learning text” (Richardson, 2011).

Logistic regression models the probability that an outcome belongs to a particu-
lar category, where all the probabilities are in the range [0, 1]. The logistic regression
is defined as following:

Y =
eβ0+β1X1+..βnXn

1 + eβ0+β1X1+..βnXn
.

Where the component β0 + β1X1 + ..βnXn is also known as logit. Because of its
nature, the logistic regression become popular due to the fact that it can perfectly
describe the probability of an event. For example, given a vector X of values which
describe a patient, Y will be the probability of the risk that that patient will getting a
disease.

2.2.2 MultiLayer Perceptron

This subsection is inspired by “Deep Learning Book” (Ian Goodfellow and Courville,
2016).

The MLP (also known as feed-forward network) aim is to approximate some
function f ∗. Let’s consider the following example:

y = f ∗(x),

where this is a mapping between x and y. The MLP define a mapping y = f (x, θ) and
learns the values of the parameter Θ that result in the best function approximation.

MLPs are also called networks because they are typically composed by different
functions. For example we could have three function connected in a chain, f1, f2, f3
and together they form

f (x) = f1( f2( f3(x))).

In this case, f1 is called first layer of the network, f2 second layer of the network
and so on. The length of this chain is called depth of the network. The final layer is
called output layer. Each layer of the network is a vector of values; the dimension-
ality of these layers determinate the width of the network. We can also think of the
layer as consisting of many units that act in parallel, each representing a vector-to-
scalar function. Each unit resembles a neuron in the sense that it receives input from
many other units and computes its own activation value. For understanding how
feed-forward networks work, we can think about how linear model works. Linear
models, such as linear regression and logistic regression, are widely use because of
their efficiency in the fitting process. One limitation of the linear models is that their
model capacity is limited to linear function and they cannot understand the interac-
tion between any pair of input variables. We can extend the linear model to represent
non-linear functions of x and then apply the linear model to the transformed input x
given by φ(x), where φ is the non linear transformation. Now we need to think how
to choose φ: in deep learning this parameter is learned; in this approach the model
is defined as following:

y = f (x; θ, w) = Φ(x; θ)Tw.
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Here, we use an optimization algorithm to find θ that correspond to a good repre-
sentation.

When we design a feed-forward neural network we need to:

• choose an optimizer;

• define a cost function;

• decide the shape of the units’ output.

Each layer requires an activation function that it is used for computing the output
of the layer.

The learning of these models are done in two steps:

1. forward: compute the output of the model with the current weights;

2. back-propagation: calculate the error given by the output and propagate the
error in the network.

The back-propagation algorithm computes efficiently the gradient for minimiz-
ing the error that the model is doing.

FIGURE 2.2: Feed-forward neural network

In Figure 2.2 (Srivastava et al., 2014) we see a full connected neural network,
where each unit of the layer li is connected to all the units in the layer li+1. From the
bottom, we can see the input layer, after two hidden layers and in the end the output
layer. Usually, the output layer contains one units per class (in the classification
tasks) or one units per outcome (regression task). The width of the layers are not
constrained from the others.

2.2.3 CNN

Convolutional Neural Networks (CNNs) are networks known for processing data
which structure is a grid. An example are the images, where we can think an im-
age as a grid of pixel (2D grid in grey-scale images, 3D in RGB images). We can
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define a CNN as a Neural Network that use convolution in place of general matrix
multiplication in at least one of its layer.

Here, in a Convolutional layer, we have an input, a kernel, and the output of the
operation between the input and the kernel, which is called feature map. Usually,
the input is a multidimensional array of data, and the kernel is a multidimensional
array of parameters that will be learn. So, if we continue to think about the image
example (grey scale, 2D), the convolution layer will be defined as following:

S(i, j) = ∑
m

∑
n

I(i−m, j− n)K(m, n).

This function is also called convolution.
Often, we apply a similar operation called cross-correlation, which is defined as:

S(i, j) = ∑
m

∑
n

I(i + m, j + n)K(m, n).

FIGURE 2.3: Convolutional Neutal Network in a 2D space

In Figure 2.3 we see an example of the CNN, where we have a kernel multiplica-
tion with the possibilities in the input.

Pooling The CNNs can be defined by three major steps:

1. the layer perform several convolutions and produce a set of linear activation;

2. each linear activation is process in a non linear activation function (detector
stage);
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3. pooling stage, which is a function that modify the output of the previous stage.

The idea behind the pooling is to replace the output of a convolution layer with its
summary statistics. We can find a lot of pooling function, for example:

• max-pooling where it replace the output of the detector stage with the maxi-
mum of a rectangular neighborhood (e.g. given a vector (1, 0, 2, 3) and a rect-
angular neighborhood of size 2, the output vector will be (1, 2, 3));

• average-pooling where, instead of using the max function for the rectangular
neighborhood, we use the average.

2.2.4 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a family on Neural Networks for processing
sequential data, such as text. Consider the sentences “I went to Nepal in 2009” and
In 2009, I went to Nepal: the fact that 2009 is in the sixth or second position should
not be relevant for the meaning of the information. In a traditional fully connected
neural network, each feature is connected with some weight, so each word will be
process based on the position on the sentence. So, in general, the input of a RNN is
a vector X(t), where t is the time step which range is from 1 to T, as shown in Figure
2.4.

In the RNN have loops that allow the information to persist. This is done by the
state called hidden state.

FIGURE 2.4: The dynamic of a RNN: each node represent a state at
some time t , and the function f map the state t to the state t + 1

In our analysis we considered two type of RNN: LSTM and GRU.

Long Short Term Memory The LSTM networks are Neural Networks that can
learn long-term dependencies. In the RNNs we have units that are repeated in the
networks, and this can be seen as a chain. The LSTM units contains:

• cell state: only minimal interactions in the chain;

• gates: they are used for add or remove information carefully in the cell state;
they are composed by a sigmoid neural network layer and pointwise multipli-
cation; the role of the sigmoid is to describe how much the new information
will be important for the cell state.

The input at time t is so used for modifying the memory of the network (the cell
state) but it will be also combined to the cell state itself and the previous hidden
state, for generating an output and a new hidden state. The LSTM unit works with
these three components: hidden state, cell state and input.

The LSTM unit have the ability to remove or add information. As describe in
(Hochreiter and Schmidhuber, 1997) and (Gers, Schmidhuber, and Cummins, 2000),
the jth units contains:

• multiplicative input gate unit: protect the memory context stored in j from the
perturbation by irrelevant inputs;
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• output gate unit: protects other units from the perturbations generated in the
current unit.

Gated Recurrent Unit Chung explain the differences between the LSTM and the
GRU (Chung et al., 2014), where GRU was defined in (Cho et al., 2014). The GRU,
like the LSTM has gating units that handle the flow of information inside the unit
but without having a separate memory cells. This make the structure of the GRU
more lighter and the train it is faster, while the performances were comparable.

(A) LSTM (B) GRU

FIGURE 2.5: Differences between LSTM and GRU

2.2.5 Language Models

A Language Model (LM) is a probability distribution over sequences of words
(Grave, Joulin, and Usunier, 2016). Given a dictionary D and V its size, each word
will be represented as a one hot encoding vector of size V. Here, the word wi will
be represented by the vector xi, where it is a vector with all zeros and in position i 1.
Using the chain rule, the probability assigned to a chain of words is defined as the
following:

p(x1, ..., xT) =
T

∏
1

p(xt|xt−1, ..., x1).

Recurrent Neural Networks, such as the LSTM, are perfect for this task, in the RNNs,
the parameters are learned by minimizing the error in the prediction of the ith word
in a sentence, given the previous.

2.2.6 Loss and Optimizers

During the training phase, the learning is given by minimizing the loss that is made
during foreword step, and this minimization is done by updating the weights (pa-
rameters) of the model, in that step called backward. There are several loss functions,
and some of that are:

• mean square error, defined as the average of the square errors between the pre-
dictions and the real values (Gareth James, 2015):

MSE =
1
n

n

∑
i
(ytrue

i − ypred
i )2;
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• mean absolute error, similar to the MSE, but in this case the error is in absolute
value (Chollet and François, 2015):

MAE =
1
n

n

∑
i
|(ytrue

i − ypred
i )|;

• cross entropy, which is a measure for estimating how much 2 distributions are
close. If the distributions can assume only two values, Keras call this case
binary cross entropy, otherwise it is called categorical cross entropy:

CE(od, td) = − ∑
d∈D

tdlogod + (1− td)log(1− od),

where od is the the distribution calculated, while td is the target distribution
(Mitchell, 1997);

• Kullback-Leibler divergence: made by Kullback (Kullback and Leibler, 1951), is
an information-based measure of disparity among probability distributions;
given two distribution defined over X, P and Q, where Q is absolutely con-
tinuous respect to P, the measure of the divergence of Q from P is the
P− expectation of −log2(

P
Q ) (Joyce, 2011):

DKL(P, Q) = −
∫

xlog2(
Q(x)
P(x)

)dP.

The whole list of luss functions that are available and implemented for the Keras
library are available in https://keras.io/losses/.

In general, the optimizer is used with the aim to minimize or maximize some
functions, where in the NNs case is the loss function.

FIGURE 2.6: Gradient descent. Illustration of how the gradient uses
the derivatives of a function for finding the minimum (Ian Goodfel-

low and Courville, 2016)

Given a function y = f (x), the derivative f ′(x) give the slope of f (x) in x. The
derivatives gives us the information of the direction where the function grows, and
the gradient uses this information for reaching the minimum / maximum of the

https://keras.io/losses/
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function. In Figure 2.6 it is explained how the gradient works. However, this tech-
nique has some performance limitation in the neural networks (Blum and Rivest,
1992) (Judd, 1990).

The process of minimizing the loss function can be accelerate by using other
techniques, such as:

• Stochastic Gradient Descendent (SGD), where the idea is to obtain an estimation
of the gradient by using minibatch (small subset of the training set) of m sam-
ples (Ian Goodfellow and Courville, 2016);

• Adam: this algorithm is efficient and it updates its parameters, such as the
learning rate, on run time, during the training; this algorithm allows an effi-
cient and a faster optimization compared to the SGD (Kingma and Ba, 2014).

2.3 Transfer Learning

. Machine learning techniques reached many successes in many tasks, from the re-
gression to the classification or clustering (Wu et al., 2008) (YANG and WU, 2006).
In general, the assumption is that both training and test set came from the same dis-
tribution. It means that if the distribution changes, the model must to be built from
scratch. Pan et. al. analyse this aspect of the machine learning in “A Survey on
Transfer Learning” (Pan and Yang, 2010). Building a model from scratch could be
really expensive and we should be able to have a model built using some informa-
tion of another existing model, in order to save time and resources. This is called
knowledge transfer or transfer learning. The motivation behind the transfer learning is
to use some existing knowledge for solving new tasks, for example the recognition
of an a cat should be similar to the recognition of a dog.

(A) Traditional Machine Learning (B) Transfer Learning

FIGURE 2.7: A comparison between the traditional machine learning
and transfer learning

Figure 2.7 (Pan and Yang, 2010) show the differences between the traditional
approach and the transfer learning.

Definition 1. Given a source domain DS and learning task TS, a target domain DT and a
learning task TT, transfer learning aims to help improve the learning of the target function
fT() in DT using the knowledge in DS and TS, where DS 6= DT, or TS 6= TT.

Definition 1 define in a formal manner what the transfer learning is.
Transfer learning task can be summarized in three sub-questions:

1. What to transfer: we need to understand what knowledge can be useful and
what cannot; when we take the knowledge of a model we need to consider
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that some knowledge are specific of that domain and other could be used for
other domains;

2. How to transfer: when we now the useful knowledge, we need to develop an
algorithm for transfer these knowledge;

3. When to transfer: when is useful to transfer and when we should not apply the
transfer. In some situations we have that the source domain and the target do-
main are not related and a transfer of the knowledge could produce a negative
transfer with bed performances for the model.

And three possible settings are available:

• inductive transfer learning, where target and source tasks are different (no matter
if the domains are the same or not). Here, we have some the label data which
is used for building the function fT(); about the source domain, we can have 2
cases:

– labeled data, and we use them with aim to achieve high performances in
the target task;

– unlabeled data, where the domain of the source data could be also differ-
ent compared to the target source domain (it means that some information
cannot be used directly) ;

• transductive transfer learning, where the source and target tasks are the same,
while the domains are different. Here, the source data is labeled while in the
target data not (unlabeled); here the feature spaces could be the same or differ-
ent ;

• unsupervised transfer learning, where the target task is similar / related to the
source task. Usually this choice is done for unlabelled data with purpose of
dimensionality reduction or clustering.

2.4 Evaluation Metrics

Metrics are fundamental for evaluating and compare models. In this section I will
introduce the metrics that I will use for my analysis.

2.4.1 Accuracy

The accuracy is one of the techniques used for evaluating the performances of a
model. We can describe the accuracy as follow:

accuracy =
Number o f Correct Predictions

Number o f Predictions
.

Accuracy gives a global evaluation of the performances of the classifier.

2.4.2 Precision, Recall and F-measure

One common way for evaluating the models is based on the precision, recall and F-
measure.
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The binary case

The binary classification is a Machine Learning instance where the outcome is ex-
pressed by a discrete and binary values. Usually this is represented by “+” and “-”
(Powers, 2011). In the binary classification the outcome cannot be both values to-
gether. Given the 2 classes, we can have four cases of predictions regions, as shown
in Table 2.1.

Predicted Class
- +

True
Class

- TN FP
+ FN TP

TABLE 2.1: Confusion Matrix

Let’s now define the precision and recall:

Recall =
TP

TP + FN
,

Precision =
TP

TP + FP
.

In the binary context the precision is the same as the accuracy metric.
This two metrics evaluate only the positive examples and predictions (class +),

which mean that neither of them capture any information about the negative cases.
This is applicable also to the F-measure, which is defined as the weighted harmonic
mean of the precision and recall.

F1 score

The F1-score (also known as F-measure) is a metric that uses the precision and re-
call of the classes for give an evaluation of the model. Here, I consider the method
provided by Scikit-Learn (Pedregosa et al., 2011) and it offers different and useful
variations. This can be applied for both binary and multi-label classification, where
in the latter case it is defined as the weighted average of the F1 score of each class.

The basic definition of the formula is described as following:

F1 = 2 ∗ precision ∗ recall
precision + recall

.

As explained previously, the weight in the average has different effects, and
Scikit-Learn offers the following:

• binary: it reports the result for the class which is defined as positive (only one
class);

• micro: calculate metrics globally by counting the total true positives, false neg-
atives and false positives;

• macro: calculate metrics for each label, and find their unweighted mean. This
does not take label imbalance into account;

• weighted: calculate metrics for each label, and find their average, weighted by
support (the number of true instances for each label). This alters “macro” to
account for label imbalance; it can result in an F-score that is not between pre-
cision and recall;
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• samples: calculate metrics for each instance, and find their average (only mean-
ingful for multi-label classification where this differs from accuracy).

2.4.3 AUC

The Area Under the (ROC) curve is an estimation of how well the model performs.
The ROC (Receiver Operating Characteristics) curve displays simultaneously the
two types of errors (e.g. true positive and false positive) for all the possible thresh-
olds. the AUC is the area under this curve, where the best result is 1, and we expect
a model with an AUC of at least equal to 0.5 (Gareth James, 2015). An example of
the plot of the AUC is given in Figure 2.8.

FIGURE 2.8: AUC example

2.5 Machine Learning Evasion

This section is a summary of the work of Biaggio et. al. (Biggio et al., 2013). Machine
Learning is widely used in security-sensitive applications such es spam filtering,
malware detection and network intrusion detection. Samples which are used for the
prediction by the machine learning can be affected by other AI for example, in order
to confound the learning. If we think to the spam detection problem, an adversary
can avoid the detection by obfuscating those words that the classifier uses for un-
derstanding if the email is spam or not. When we design a model, we should use
preactive protection mechanisms for preventing the impact of an adversarial attack;
for doing that, we need to:

1. finding potential vulnerabilities of the model before that an adversary exploits
the weakness;

2. investigate the impact of the vulnerabilities;

3. try to find some countermeasures to those attacks that can significantly impact
to the performances of our model.
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2.5.1 Evasion at test time

A classification algorithm is defined as:

f : X→ Y,

which is just a function which, given an input, it will returns some labels associated
to that input. The labels are predefined.

Adversary Model First, we need to do some assumptions:

• What is the adversary knowledge?;

• What is the capability to modify and to manipulate the input data?.

The goal of the adversary is to defined in terms of utility function that the adversary
want to maximize (or minimize). The aim is to have a miss-classified sample.

Adversary’s knowledge The adversary’s knowledge can include:

• the training set or a part of it;

• the feature representation of each sample (how samples are mapped into the
feature space);

• the type of the learning algorithm and the form of the decision function;

• the trained classifier model;

• the feedback from the classifier.

Adversary’s capabilities In this scenario, the adversary can only modify the test
data and it cannot touch other components, such as the training set. In this restric-
tion, the adversary’s choices are:

• modification of the input data (limited or unlimited);

• modification to the feature vector (limited or unlimited);

• independent modifications to specific features.

In general we can think that the attacker can manipulate every feature while what is
important is the level of modifications allowed.

2.5.2 Attacks scenarios

The attacker can has:

• perfect knowledge, where he / she knows perfectly every aspect of our classifier,
from the training set, to the model (feature space, model type, hyper parame-
ters). In this scenario the attacker try to miss-classify a sample with less modi-
fication as possible. Here the attacker know the function f that classify and try
to find its weakness;
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• limited knowledge, where, as in the previous scenario, the attacker wants to
miss-classify the samples, but the knowledge is more limited in knowing for
example the feature space (what are the features that the model uses) or the
type of the model, but it does not know nothing about the final model or the
training data. Under this scenario the attacker try to approximate the real func-
tion f (e.g. if we can have access to the classifications of some samples).

2.5.3 Adversarial Machine Learning

As described previously in this section, the goal of an attacker is to use some adver-
sarial examples that fool the classifier (miss-classification). The aim of the attacker is
to modify a sample s that is classified as ci in such a way that s* (the modified s) is
perceptually indistinguishable from ci but it is classified as cj. The idea behind the
adversarial machine training, as explained by Kurakin et. al. (Kurakin, Goodfellow,
and Bengio, 2016), is to inject adversarial examples in the training data. This means
that, for each sample of the dataset, we will insert also a modify version which looks
like an attacker attacks. In this way the model should learn and be more resistant
over that specific class of attacks.
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Chapter 3

Hate Speech and Related Works

Our study is focused on the hate speech detection. In this chapter I will discuss
about hate speech, how is defined from the law and NLP community point of views
(sections 3.1, 3.2), and the aspects / consequences that concerns this phenomena
(Section 3.4). Moreover, in Section 3.3 we will show the importance of the swear
words in this topic.

3.1 The European Court of Human Rights

What is “hate speech”? In June 2018, the European Court of Human Rights touched
this topic (Human Rights, 2018) and reports the a part of the judgment of July 6 2006,
Erbakan v. Turkey, as reported in Definition 2.

Definition 2. [...] Tolerance and respect for the equal dignity of all human beings constitute
the foundations of a democratic, pluralistic society. That being so, as a matter of principle
it may be considered necessary in certain democratic societies to sanction or even prevent
all forms of expression which spread, incite, promote or justify hatred based on intolerance
. . . , provided that any “formalities”, “conditions”, “restrictions” or “penalties” imposed are
proportionate to the legitimate aim pursued. (ECHR, 2006)

One important point to consider is the freedom of expression, where we need to
understand where is the limit of the latter. In Definition 3 we give a definition of it.

Definition 3. Freedom of expression constitutes one of the essential foundations of [a demo-
cratic] society, one of the basic conditions for its progress and for the development of every
man. Subject to paragraph 2 of Article 10 [of the European Convention on Human Rights],
it is applicable not only to “information” or “ideas” that are favourably received or regarded
as inoffensive or as a matter of indifference, but also to those that offend, shock or disturb
the State or any sector of the population. Such are the demands of that pluralism, tolerance
and broad-mindedness without which there is no “democratic society”. This means, among
other things, that every “formality”, “condition”, “restriction” or “penalty” imposed in this
sphere must be proportionate to the legitimate aim pursued. (ECHR, 1976)

The European Court of Human Rights uses two approaches for dealing with
cases of incitement of hatred and freedom of expression (Human Rights, 2018):

• the approach of exclusion from the protection of the Convention, provided for
by Article 17 (prohibition of abuse of rights)1, where the comments in question
amount to hate speech and negate the fundamental values of the Convention;

• the approach of setting restrictions on protection, provided for by Article 10,
paragraph 2, of the Convention2 (this approach is adopted where the speech
in question, although it is hate speech, is not apt to destroy the fundamental
values of the Convention).
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Definition 4. Article 10: Freedom of Expression (European Court of Human Rights)

1. Everyone has the right to freedom of expression. This right shall include freedom to
hold opinions and to receive and impart information and ideas without interference by
public authority and regardless of frontiers. This Article shall not prevent States from
requiring the licensing of broadcasting, television or cinema enterprises;

2. The exercise of these freedoms, since it carries with it duties and responsibilities, may
be subject to such formalities, conditions, restrictions or penalties as are prescribed
by law and are necessary in a democratic society, in the interests of national security,
territorial integrity or public safety, for the prevention of disorder or crime, for the
protection of health or morals, for the protection of the reputation or rights of others,
for preventing the disclosure of information received in confidence, or for maintaining
the authority and impartiality of the judiciary.

Definition 5. Article 17: Prohibition of abuse of rights (European Court of Human
Rights)

Nothing in this Convention may be interpreted as implying for any State, group or per-
son any right to engage in any activity or perform any act aimed at the destruction of any
of the rights and freedoms set forth herein or at their limitation to a greater extent than is
provided for in the Convention.

3.2 Hate Speech in the NLP Community

In the previous section we defined the hate speech from the European Court of Hu-
man Rights point of view. In this section I will discuss some aspects about the topic
from the NLP community point of view.

One simple definition is given by Nockleby, where the hate speech is seen as any
kind of communication that disparages a person or a group on the basis of some
characteristics such as race, colour, ethnicity, sexual orientation, nationality religion
or other characteristics (Levy, Karst, and Winkler, 2000).

For having some concrete examples of these sentences, we can consider some
hateful sentences provided by Schmidt et. al. (Schmidt and Wiegand, 2017):

• Go fucking kill yourself and die already pile of shit scumbag;

• The Jew Faggot Behind The Financial Collapse;

• Hope one of those bitches falls over and breaks her leg.

As described by Schmidt et. al. in their survey of the hate speech, in the NLP
community there are several tasks that try to study and analyze the phenomenon or
its sub-classes (Schmidt and Wiegand, 2017), such as:

• hate speech (Schmidt and Wiegand, 2017) (Gröndahl et al., 2018) (Zeerak and
Hovy, 2016) (Davidson et al., 2017) (Warner and Hirschberg, 2012a);

• abusive messages (Spertus, 1997);

• hostile messages (Spertus, 1997);

• flames (Spertus, 1997);

• cyberbullying (Hosseinmardi et al., 2015) (Zhong et al., 2016) (Van Hee et al.,
2015);
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• offensive languages (Razavi et al., 2010);

• personal insults (“Automatic identification of personal insults on social news
sites”);

• profanity (Sood, Antin, and Churchill, 2012);

• toxicity (Wulczyn, 2017).

3.3 Offensive vs. Hate Speech

An important distinction is done by Davidsio et. al. where it considers also the
problem of the offensive messages (Davidson et al., 2017). In this work, Davidson
defined the hate speech as as language that is used to expresses hatred towards a targeted
group or is intended to be derogatory, to humiliate, or to insult the members of the group.
In this definition the authors made an important distinction with the language that
uses offensive terms and hate speech. In this section I try to analyze the importance
of the distinction between these two categories.

The use of the offensive language is common in the spoken language; for exam-
ple, Wang et. al. show that in a normal day of a student, the use of the swear words
is around the 0.5% of the total used words (Mehl and Pennebaker, 2003) (1 swear
word every 200 words).

Swear words are also called taboo words. But in which occasions are they used?
Jey analyze the phenomenon (Jay, 2009); the use of swear words depends on the
context and on the purpose of the speaker and they are used for expressing a wide
set of emotions, from angry to joy, from frustration to surprise: this means that we
can use these words for positive and negative emotions. In general we have two
forms of use: spontaneous form, where we do not have a lot of control of what we
are saying, and reflective form, where we can think of what to say. Clearly, we cannot
consider hateful some sentences such as “Holy shit! Fuck me!”, which denotes a sur-
prise emotion, just because they contain some swear words. So, while taboo words
are associated as feature of sexual harassment, blasphemy, hate speech or discrimi-
nation, they can also be used for positive outcomes, such as jokes, humor, sex talk,
in-group slang, storytelling, ironic sarcasm in order to promote social harmony (e.g.
“this CD is fucking great”). In these cases the swear words are used with out the intent
of being offensive (not offensive for someone, but just offensive as language).

Davidson suggest a distinction between these 2 classes (hate speech and offen-
sive language) because the hate speech has some legal and moral consequences
while offensive language has not an intent to offend or damage someone. This dis-
tinction must to be considered in order to avoid mistakes in the recognition, where
the detector can decide their judgment based just on swear words.

3.4 The Effect of the Hate Speech

Hate speech is something that we need to take care, and we need to understand why
is important to block it. In this section I will analyze some effects of the hate speech
in the people’s life, based in some psychological studies.
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3.4.1 Cyberbulling

One of the aspects of the hate speech is the cyberbullying (Schmidt and Wiegand,
2017). Smith et. al. studied the impact of this phenomenon in the life of teenagers
(secondary school students) (Smith et al., 2008).

Definition 6. Cyberbullying is bullying using messages and internet as method of propa-
gation(Smith et al., 2008).

In Definition 6 we can understand what the cyberbully is, where a “bullying” is
defined as being an aggressive,intentional act or behaviour that is carried out by a
group or an individual repeatedly and over time against a victim who can not easily
defend him or herself (Olweus, 1993).

Smith et. al. show that this phenomenon start becoming important in 2008,
thanks to the ease of use of the new technologies such as smart-phone (with instant
messages). Table 3.1 shows a comparison between the bullying and cyberbullying
in 2008.

Frequency Bullyied Cyberbullyied
Often 14.1% 6.6%
Occasionally 31.5% 15.6%
Never 54.4% 77.8%

TABLE 3.1: Comparison of the percentage of teenager which were
bullied / cyberbullied in 2008. Often: from several times a week to
few times per month, occasionally: happened just few times, never:

never happened (Smith et al., 2008)

Another interesting study is done by Whittaker et. al., where they study the
impact of the social media and the relations with the cyberbullying (Whittaker and
Kowalski, 2014). In this work authors conducted three study cases over 196 female
and 75 male (students, age from 18 to 25, average 18.8, standard deviation 1.2 8.6%
Afro-American, 91.4% American). Here, I will analyze just the Study 1.

Technology Usage Victims
text 99.6% 56.8%
e-mail 98.4% /
Facebook 86.5% 38.6%
YouTube 75.1% 11.4%
Instagram 70.9% 13.7%
Twitter 69.4% 45.5%
Instant messaging 14.5% 2.3%
Chat rooms 2.3% 2.3%

TABLE 3.2: Usage: percentage of the people which often or frequently
use the technology; Victims: percentage of people which were victim-

ized (Whittaker and Kowalski, 2014)

Study 1 The aim of this study is to understand the degree to which social media
are related to the cyberbullying. The results shows that the 77% reported that they
felt safe by using social media. Table 3.2 shows the collected statistics.
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Definition 7. Scale for Suicidal Ideation The Scale for Suicidal Ideation (SSI) it is a scale
for the evaluate the idea of a suicide of an individual; the Suicidal Ideation is the previous act
before the suicidal. It is important to identify the intensity of this phase for predicting the
probability that a specific individual will commit a suicide (T. Beck, Kovacs, and Weissman,
1979).

Unfortunately, the cyberbullying has also bad effects in the victims. Hinduja et.
al. in 2010 conducted an analysis on the correlation between the cyberbullying and
suicides (Hinduja and Patchin, 2010). In their study, they consider a sample of 1973
students and the measurement was the suicidal ideation, which include four questions
with answer yes / no:

• have you ever felt so sad or hopeless almost every day for two weeks or more
in a row that you stopped doing some usual activities;

• have you ever seriously thought about attempting suicide;

• have you ever made a specific plan about how you would attempt suicide;

• have you ever attempted suicide.

In the analysis they consider 4 aspects of the bullying: traditional bullying victimiza-
tion, traditional bullying offending, cyberbullying victimization and cyberbullying offend-
ing. Let’s focus only in the cyberbullying victimization point: the cyberbullying victim-
ization represents the respondent’s experience in the last month and the choices as
answer of the task (Table 3.3) were 5, from “never” to “every day”.

Type Percentage
Received an upsetting email
from someone you know

18.3%

Received an instant message
that made you upset

16.0%

Had something posted on your
MySpace that made you upset

14.2%

Been made fun of in a chat room 10.0%
Received an upsetting email from
someone you didn’t know (not spam)

9.7%

Had something posted about you
on another web page that made you upset

9.5%

Something has been posted about
you online that you didn’t want others to see

9.2%

Been picked on or bullied online 9%
Been afraid to go on the computer 5.7%
One or more of the above, two or more times 29.4%

TABLE 3.3: Cyberbullying victimization over the last 30 days (Hin-
duja and Patchin, 2010)

The results about the suicide are: 20% reported seriously thinking about the sui-
cide and 19% attempting suicide. Authors noticed an high correlation between sam-
ples which have been victimized by episode of bullying and cyberbullying and the
suicidal ideation. This raise some important aspects of the hate speech and how dan-
gerous it could be.
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3.4.2 Sexism

Another form of hate speech on social networks is the sexism and Fox et. al. try to
understand what are the effects on sexist comment on Twitter (Fox, Cruz, and Lee,
2015).

Study case: Twitter 172 samples were selected (86 males and 86 females) for the
test. The age varies from 18 to 41 (mean = 20.7, standard deviation = 3.82) and there
were different countries. The samples were randomly divided equally for the four
tasks:

• anonymous re-tweet;

• anonymous create;

• identified re-tweet;

• identified create.

For the tasks, the participants were asked to use a public Twitter account, which
was followed by other students. In the anonymous conditions, every account had a
generic user-name and an avatar as profile photo, followed by 150 users. In this way
the anonymity of the users behind these accounts were guaranteed. The second case
is the identified one, where the accounts were associated with their real names and
real information. Participants were asked to either re-tweet existing tweets using the
hashtag or write their own tweets using the hashtag. After assigning these profiles,
participants were involved in a survey with questions related to the hostile sexism
items. The third step, participants were asked to evaluate the resume (Curriculum
Vitae) of two females and two males candidates.

The results of this study were:

• more sexism hostility for anonymous participants rather than non anonymous
participants after tweeting;

• participants who composed sexist tweets were more hostile in the evaluation
of female candidate (less competent than male), while this phenomenon was
more restricted for participants which just retweeted .

3.5 Hate Speech Representation

Schmidt and Wiegand wrote a survey on these topic which give an overview of what
is going on in the research area and what are the approaches involved in the topic
(Schmidt and Wiegand, 2017). First, they shows the features of the hate speech:

(i) Simple Feature Space: the use of surface-level features, such as bag of words;
unigram and ngrams are highly involved, where sometimes they are use with
in addition of other features; character ngrams can helps with the problem of
the spelling (e.g. mistakes / typos in the words), for example sentences such
as kill yrself a$$hole are highly hateful, but they can be a problem for models
which uses words. Other surface information are the number of URL, lengths
of sentences, words not available in the English dictionaries, the number of
non-alpha numeric characters present in tokens;
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(ii) Word Generalization: the limitation of the bag of word is that the words must to
be present in both training and test set, in order to achieve good performances;
word clustering is often used in these cases, where the words are replaces with
the IDs of their cluster (every cluster represents a set of words). Another ap-
proach is the word embeddings, where each word is represented as a vector and
similar words will have similar vectors (they will be close in the hyperspace).
A similar approach is the paragraph embedding, where the sentence is repre-
sented with a unique vector which is, for example, calculated by the average
of the word embedding that the sentence contains. An example of this category
is shown in (Warner and Hirschberg, 2012b);

(iii) Sentiment Analysis: usually hate sentences are related to negative sentiments.
In several analysis of the hate speech, this feature used for the classification;

(iv) Lexical Resources: some assumption can be done, such as thinking that hateful
sentences contains some specific negative words; there are some sources which
give the list of these words that have been collected over the years in the web
(e.g. hatebase.org);

(v) Linguistic Features: linguistic features can be used for catching the relationship
between words; for example, given the sentence Jews are lower class pigs, the
linguistic feature can capture the relation between Jews and pigs;

(vi) Knowledge based features: the hate speech cannot be detected by just looking for
some keywords; if we consider the sentence Put on a wig and lipstick and be who
you really are, this is not hateful. If the sentence is isolated from the context, it
is difficult to detect the hate speech; if the previous sentence was posted over
a photo of a male guy, it could remark the sexuality orientation of the target
person. The context play an important role in the hate speech;

(vii) Meta Information: we can consider other information as feature, such as the
gender of the sender (who write the message), and the receiver (who receive
the message), but also the age, sexual orientation, political orientation, country,
nationality, ...;

(viii) Multi-modal Information: social are not based only on the text but also on im-
ages. We could use the information of the image for having other features and
for knowing better the context of the sentence.

In our analysis we will exclude (vii)-(viii), because we focus on the detection of
the hate speech based only on the mere text.

3.6 Spam Detection and Evasion

In our knowledge, in the hate speech classification task nobody considered the prob-
lem of the evasions. In a similar task, the spam detection, several approaches have
been proposed. One example is the text obfuscation in Bayesian models (Stern, Ma-
son, and Shepherd, 2004), where the model were attacked by injecting poisoned
spam samples; from a group of 1000 common English words, two were taken and
add to the object of the email and 100 were added to the corpus. The classifiers
that were considered for the study had a degradation of the performance during the
attack.
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Chapter 4

Dataset

In this work we did not collect data for the experiments but we rely on datasets
which are available on-line. The datasets focus on partially disjoint aspects of “hate”,
e.g. hate speech based on religion and ethnicity may not be highly similar to sexual
connotated hate speech.

The datasets that we used are:

• Wikidetox (W): Toxic - Non Toxic (Wulczyn, 2017);

• Twitter (T1): Hate Speech - Offensive - Neither (Davidson et al., 2017);

• Twitter (T2): Racist - Sexist - Neither (Zeerak and Hovy, 2016);

• Twitter (T3): Hateful - Neither (Zhang Ziqi, 2018).

In this chapter I will describe (Section 4.1) and analyze the properties (Section
4.2) of the dataset that we used for this study.

4.1 Datasets Introduction

4.1.1 Wikipedia (W)

The dataset is a part of Wikipedia’s “Detox” project targeting personal attacks in
Wikipedia’s edit comments. As described by Wulczyn et al. (Wulczyn, 2017), labels
were gathered via crowd-sourcing, which is defined by the following steps:

• generation of a corpus based on Wikipedia comments ;

• choosing a question for the judge of humans;

• take a subsample of the corpus for the labeling purpose;

• designing a strategy for having reliable labels.

We denote this dataset as W. This dataset is a combination of two datasets:

• comments: the text which need to be judge;

• annotations: it contain the judgment of a comment of a specific crowd-worker.

The annotator can label the comment as:

• targeted at the recipient of the message (e.g. you suck);

• targeted as a third party (e.g. Bob suck);

• being reported or quoted (e.g. Bob said Henri sucks);
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• another kind of attack;

• this is not an attack or harassment.

Here, each comment is labeled (judged) 10 times and a comment is referred as attack
if the majority of annotators labeled it as such.

4.1.2 Twitter 1 (T1)

Davidson et al. (Davidson et al., 2017) presented a dataset with three kinds of com-
ments from Twitter: hate speech, offensive but non-hateful speech, and neither. This
is, to our knowledge, the only dataset with such a distinction. The hate speech data
was collected by searching for tweets with known hate speech phrases, 3 and further
labeling these tweets with a majority vote from three CrowdFlower workers each.
We denote this dataset as T1. For the collection of the samples, Davidson et al. de-
cide to use Hatebase.org, which is a database which contains examples of hate speech
phrases collected over the web. Authors uses the Twitter API for collecting tweet
which contains terms from the lexicon derived by Hatebase.org. The dataset con-
tains 24783 samples, where 1430 are classified as hate speech (5%), 19190 offensive
but not hateful (76%), and 4163 as neither (19%). The whole dataset contains 40817
words. For some experiments, we combined the offensive class with the neither one,
and we denoted this dataset as T1*.

4.1.3 Twitter 2 (T2)

This dataset is collected by Waseem et al. (Zeerak and Hovy, 2016) and it collected
data using the Twitter platform. This dataset contains three possible labels:“racism”,
“sexism”, and “neither”. In our experiments, we combined the “racism” and “sex-
ism” classes into one, comprising general hateful material. We denote this dataset as
T2. For identifying hate speech, authors proposed the following:

1. uses a sexist or racial slur;

2. attacks a minority;

3. seeks to silence a minority;

4. criticizes a minority (without a well founded argument);

5. promotes, but does not directly use, hate speech or violent crime;

6. criticizes a minority and uses a straw man argument;

7. blatantly misrepresents truth or seeks to distort views on a minority with un-
founded claims;

8. shows support of problematic hash tags. E.g. “#BanIslam”, “#whoriental”,
“#whitegenocide”;

9. negatively stereotypes a minority;

10. defends xenophobia or sexism;

11. contains a screen name that is offensive, as per the previous criteria, the tweet
is ambiguous (at best), and the tweet is on a topic that satisfies any of the above
criteria.
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4.1.4 Twitter 3 (T3)

Zhang et al. (Zhang Ziqi, 2018) decided to create their own dataset based on Twitter,
which we call T3, and in this case the hate speech targets refugees and muslims.
They collected data by using Twitter streaming API, by monitoring some words
(muslim, islam, islamic, immigration, migrant, immigrant, refugee, asylum) and
some hashtag (#refugeesnotwelcome, #DeportallMuslims, #banislam, #banmuslims,
#destroyislam, #norefugees, #notmuslims). .

4.2 Datasets Analysis

In this section I will analyze the statistical properties of these datasets and try to
analyze the correlations between them.

4.2.1 Classes Distribution

As described in the Chapter 3, there are different form of hate speech. The dataset
that we considered vary on this aspect, which mean that they analyze different as-
pect of the hate speech, from toxicity to racism. In general, the hateful class is the
minority one (compared to the other of the same dataset). Also, the datasets have
different sizes: T3 is a small dataset (2.5K sentences), T1 and T2 are medium datasets
with around 20 thousand of examples, meanwhile W is a huge dataset with more
than 100 thousand of items. In general, the hateful class(es) are the minority, with a
consequence of the unbalanced dataset. Table 4.1 and Figure 4.1 summarize these
aspects.

Dataset Domain Classes (size) Source

W Wikipedia
personal attacks (13590)

(Wulczyn, 2017)
ordinary (102274)

T1 Twitter
hate speech (1430)

(Davidson et al., 2017)offensive (19190)
ordinary (4163)

T1* Twitter
hateful (1430)

(Davidson et al., 2017)
offensive ∪ ordinary (23353)

T2 Twitter
racist ∪ sexist (5013)

(Zeerak and Hovy, 2016)
ordinary (10796)

T3 Twitter
hateful/racist (414)

(Zhang Ziqi, 2018)
ordinary (2021)

TABLE 4.1: Datasets used in our replication. Union (∪) denotes the
conflation of class elements.

4.2.2 Sentences Examples

For understanding better the nature of the problem, I will show some examples of
sentences for each class and for each dataset.

W

1. toxic:
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(A) T1 (B) T2

(C) T3 (D) W

FIGURE 4.1: Classes distribution for each dataset

• Anon :What the heck are you talking about? This is an encyclopedia, not
a book store;

• Thank goodness your interests arent purely rote, Larry, or the WP no
doubt would be more less, and less more;

• On Google Vereenigde Oost - Indische Compagnie gets more hits than
Vereenigde Oostindische Compagnie which is correct?;

2. non toxic:

• i have a dick, its bigger than yours! hahaha;

• Iraq is not good === === USA is bad;

• fuck off you little asshole. If you want to talk to me as a human [...].

In W it seems that the toxicity is generated from the use of an inappropriate lan-
guage, generated for example with the use of swear words. From the three toxic
examples, the first one seems (from my point of view), that the sentence is labelled
as such just because of the word “dick”; the second one in my opinion does not have
any sense of being there, while the third one is a clear example of an attack to a
person (hate speech).

T1

1. hate speech
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• We hate niggers, we hate faggots and we hate spics-kkk rally;

• Let’s kill cracker babies!. WTF did I just hear???????? WOW;

• @MarkRoundtreeJr: LMFAOOOO I HATE BLACK PEOPLE. This is why
there’s black people and niggers;

2. offensive

• bad bitches is the only thing that i like;

• lames crying over hoes thats tears of a clown ;

• pussy is a powerful drug;

3. neither

• “Bae” sounds like such a ghetto word. Use something else;

• “Brownies for my brownie” I love this movie;

• “@riananewman: @22EdHam brownies tonight” what kind?!?!.

T1 seems to capture well the aspects of the three classes; the hate class contains
examples of racism (first and third one), incite to hate (second one). The offensive, as
also described by Davidson (Davidson et al., 2017), seems to contain swear words in
its examples (e.g. bitches, hoes, pussy) while the neither class shows some examples
of the common speech / dialogues.

T2

1. racism

• Drasko they didn’t cook half a bird you idiot # mkr;

• @ummayman90 When people leave Islam, they don’t announce it. They
just quietly walk away;

• @anjemchoudary Idiots like you making such declarations have no con-
tact with reality. Islam is inhuman and must be outlawed;

2. sexism

• I’ve had better looking shits than these two! # MKR2015 # MKR #
killerblondes;

• Sorry # killerblondes but you are a long LONG way from refined. # mkr;

• Not dumb blondes...mmm...perhaps just delusions of adequacy? # MKR;

3. none

• # mkr at least there are judging honestly;

• My little lemon tarts #mkr;

• I score them a 3 and that’s generous # MKR.

T2 contains samples of racism and sexism, where the racism’s sentences attack
the Islam; the sexism is contain some offense words against the female gender (e.g.
“dumb blondes” in the third sentence).
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T3

1. hate speech

• Spain was islamic for 800 years. But we got rid of the vermin # BanIslam;
• Tell Patagonia to go back to Patagonia! Syrian Iran ;
• @FoxNewsResearch @toni_s_r_ # NoRefugees Keep USA safe!;

2. neither

• @CNN Always a lone wolf when its Muslim. Every day # ramadan
2017 has given us a murder terror attach by stone age throwbacks. #
NoRefugees;
• @AMike4761 Starbucks committing suicide # NoRefugees ;
• A staunch Tory Trump.

T3 follow the consideration of T2, where the hateful class seems with a political /
religious tone versus other countries / races.

W T1 HS T1 Off T2 T3
fuck rt bitch rt banislam
nigger bitch rt sexist banmuslims
shit faggot bitches mkr rt
suck like like im islam
ass nigga hoes islam muslim
faggot ass pussy women refugenotwelcome
hate white hoe muslims muslims
u fuck im like norefugees
go trash dont dont hate
like nigger ass girls bansharia

TABLE 4.2: Top 10 words for each offensive / hateful class in each
dataset

The top hateful words, for each dataset seems to be similar, as shown in table
4.2, suggesting that there are some terms which are highly used in general in hateful
sentences. Also, there are some words like “women”, “like” or “go” which are used
in the common language and alone are not hateful. Another particularity is given by
the class of offensive and hateful of T1, where we have some common words which
appear in both top 10 categories (e.g. bitch, ass, like).

4.2.3 Datasets Similarities

One of the aims of this research is to study how well the models scale. There are a
lot of factors here to consider (e.g. architecture, feature representation, dataset, etc
...). The data try to capture different form of hate speech, and this could be a prob-
lem from the scalability point of view, because some terms could be not recognize
as “problematic” for the model. The first question is to understand the similarity
between vocabularies; for conducting this operation I used the parser word_tokenize
provided by NLTK (Bird and Klein, 2009), where, given a sentence, it returns the
tokens for which the sentence is composed by; for example, given the sentence:

Hello, how are you? I′m starving,
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the algorithm will produce:

′Hello′, ′,′ , ′how′, ′are′, ′you′, ′?′, ′ I′, ′′m′, ′starving′.

This means that the vocabularies will contain words, but also punctuation and other
symbols. As result of this operation, where all the sentences were treated with the
lower case, W contains 215818 tokens, T1 38038, T2 25121, T3 9687. The obtained
sized shows that the huger the dataset, the bigger the vocabulary. What we can
expected is that a huge vocabulary most likely will contain the words of the smaller
dictionaries. In the first moment, let’s see how these dictionaries are similar, where
the evaluation is given by the following formula:

f (d1, d2) = size(d1∩ d2)/size(d1).

Figure 4.2 the previous idea, where the small dictionaries of T1, T2 and T3 cannot
cover well the dictionary of W which is huger; the opposite, W can cover better the
other vocabularies. The vocabularies still very different, where in the best scenario
one word is lost every two.

FIGURE 4.2: Similarity between the dictionaries; each dictionary in
the rows represent d1, the dictionary that we want to cover, while the

columns represent d2, the dictionaries used to cover

Given this assumption, we should think if this is a problem: the datasets seem
widely different. The point here, is that maybe we are loosing just some specific
words which appeared just once in the dataset, such as typos, misspellings, errors,
or just names. For a better comparison we could, instead of looking for the similarity
of the datasets, look for the similarity of the words distribution. In this case, the idea
is that the common words are similar. The metric for the evaluation here is:

f (d1, d2) = ∑((d1∩ d2).count)/ ∑(d1.count),

where di.count give the frequency of the words that appear in the dataset Di.
Figure 4.3 shows that the dictionaries can cover most of the sentences of the other

datasets. The best case is W which seems to loose one words every 10. This confirm
the hypotheses that a lot of words appears just few times, as shown in the Figure 4.4;
the word ranking is made by ordering the word by their frequency in a descendent
way, and plot the ordered distribution, where in the x axis we have the rank of words



32 Chapter 4. Dataset

FIGURE 4.3: Similarity between the words distributions; each dictio-
nary in the rows represent d1, the dictionary that we want to cover,

while the columns represent d2, the dictionaries used to cover

and in the y axis the frequency. Now the question is: are these words relevant for
the classification?

(A) W (B) T1

(C) T2 (D) T3

FIGURE 4.4: Word ranking per dataset
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4.2.4 Swear words

The swear words plays an important role in the classification, as mentioned in Sec-
tion 3.3; for this reason, we should understand the presence of these words in the
classes of the datasets. Since I do not have a list of all possible swear words, I de-
cided to use some common words (Jay, 2009); the list of words are “fuck”, “fucking”,
“shit”, “hell”, “damn”, “goddamn”, “ass”, “bitch”, “sucks”. Here, I just count the
number of occurrences inside each class and see how many swear words per sen-
tence we have (the results will show the percentage of sentences affected by swear
words).

• W: 1.27% (Non Toxic) / 29.7% (Toxic);

• T1: 28.1% (Hate Speech) / 50.4% (Offensive) / 1.03% (Neither);

• T2: 7.00% (Sexism) / 1.51% (Racism) / 3.52% (None);

• T3: 0.72% (Hate Speech) / 0.72% (Neither).

Clearly, these results can just have an idea of what is going on, because we are using
just few swear words and not a detailed list. However, it seems that the toxic class
of W contains more swear words compared to the non toxic one . T1 seems to have
the correct distribution of swear words (more in the offensive class, not a lot in the
none class), while in T2 and T3 it seems that they contain the same amount for all
the classes. This situation will be studied more in detail in Section 5.3, where we will
see if the use of swear words will affect the decision of the classifier.
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Chapter 5

Models & Performances

It is the time for understanding the models which are used for this research. We be-
gin by describing four recent papers (Wulczyn, 2017), (Davidson et al., 2017) (Bad-
jatiya et al., 2017), (Zhang Ziqi, 2018) on hate speech detection. We reproduce and
systematically analyze the performance of seven models presented in these papers.
Each paper studies different machine learning architecture for the hate speech de-
tection. Here, the representation of a sentence is bases on two main approaches: TF-
IDF vector based on word or character ngrams, or word embedding. The machine
learning models vary from simple architectures such as the Logistic Regression or a
Multilayer Perceptron to more complex and deep architecture such as the LSTM or
the GRU. We can summarize the models that we analyzed in Table 5.1 and discuss
them in the remainder of this chapter.

Model Dataset(s) Source
LR char W (Wulczyn, 2017)

MLP char W (Wulczyn, 2017)
LR word T1 (Davidson et al., 2017)

CNN+GRU T1*, T2, T3 (Zhang Ziqi, 2018)
LSTM T2 (Badjatiya et al., 2017)

TABLE 5.1: Replicated machine learning models

After, we will analyze the performances of these models, by understanding how
well they perform in their dataset, how well they scales, the errors types and how
the handle the taboo words.

In this Chapter we will see a description of these models (Section 5.1), a compar-
ison in the performances (Section 5.2). As suggested in the previous chapters, swear
words are quite important in this distinction, so we will test the offensive class of T1
and we will see which label the sentences will be assigned (Section 5.3). In Section
5.4 we will try to focus on some prediction for each class and for each dataset, trying
to understand why we have some predictions, and trying to understand how the
models are “thinking”.

5.1 Models Description

In this first part of the chapter I will describe the architectures of the models which
are involved.
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5.1.1 Logistic Regression and Multilayer Perceptron over W dataset

Let’s start with the models which are studied by Wulczyn et al. in (Wulczyn, 2017).
The models are applied for the dataset Wikidetox (“W”.

This model propose two main model architecture:

• Logistic Regression;

• MLP.

In all the architectures, as last layer, there is a softmax function and use the cross-
entropy as loss function. Authors studied the effect over 3 architecture variants:

• Model Architecture: Logistic Regression, Multi-Layer Perceptron;

• N-gram type: word, char;

• label type: One Hot, Empirical Distribution.

In order to provide reproducibility, authors provided a division of the samples
(training, test and evaluation) with ratio 3:1:1. As evaluation metric, authors choose
two metrics: the area under the receiver operating curve (AUC). The results of their
work, Table 2 of (Wulczyn, 2017), is described in Table 5.2.

Model Type N-gram type Label Type AUC
LR Word OH 94.62

ED 95.55
Char OH 96.18

ED 96.24
MLP Word OH 95.25

ED 96.15
Char OH 95.90

ED 96.59

TABLE 5.2: Original models and performances over W

The results are obtained using train as training set and the dev as evaluation set
(train and dev are label of samples for allowing the replication). Authors provide
also the best hyper-parameters for each model, so replicating the results was not
difficult. As we can see, character models seems to perform better than word based
model. Furthermore, for allowing the possibility of a comparison between the other
dataset, which don’t have the Empirical Distribution, we decided to continue to use
only the models which use the One Hot encoding as labels (MLP char OH and LR
char OH).

Both techniques uses n-gram as feature representation and they are weighted
using their TF-IDF. A function of Scikit-Learn (Pedregosa et al., 2011) called Tfid-
fVectorizer compute this transformation and convert a sentence into a vector of real
numbers (vector representation).

Logistic Regression For the Logistic Regression, we take the top 10000 n-grams in
the range [1, 5], which mean that we only consider the most common n-gram for the
representation. As said previously, here we are using n-grams over characters. In
this case the TF is also scale using the following formula:

TF = 1 + log(TF).
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In the end, vector are normalized by using the norm “L2”. About the model, authors
provided two versions: one which uses the MLP for simulating the Logistic Regres-
sion and the second one the Logistic Regression provided by Scikit-Learn (Pedregosa
et al., 2011). In the analysis we used only the letter one.

MLP The feature representation in this case is the same as the Logistic Regression.
Here, what it changes, is the model architecture. As MLP, it is created by using
three Dense Layer, each one with 50 units, and all of them uses the norm L2 a kernel
regularizer. Here, the activation function of these three layers is the ReLu. The last
layer, which is the one for the classification, is a dense layer which contains two units
(one per target class) and it is followed by the Softmax function. The optimizer used
is Adam with the default settings, and as loss function kullback laibler divergence. The
learning rate is 0.001, epochs 16, and batch size 200. The architecture of the model is
designed using Keras (Chollet and François, 2015).

5.1.2 Logistic Regression over T1 dataset

Devidson et al. (Davidson et al., 2017) present a Logistic Regression character based
as model, over the Twitter dataset T1. Davidson provide the code for the experi-
ments and also in this case the replication was an easy job.

The model represent data in a similar way of the MLP and Logistic Regression
over the Wikidetox dataset. Also here, authors use the TfidfVectorizer, while in this
case it is based on unigram, bigram and trigram over words and not characters.
Here, the words are lowercased and also stemmed, by using the Porter Stemmer
provided by NLTK (Bird and Klein, 2009). The filter of the n-grams is applied on the
top 10000, which have a minimum frequency of 5 elements, and maximum distribu-
tion frequency lower than 0.75 (in this case, which is a float, the value represents a
proportion of documents).

The furst step of the pipeline is a feature selection phase, which is made by the
function SelectFromModel from the Scikit-Learn’s library, which is defined as a meta-
transformer for selecting features based on importance weights. The model for the
feature selection is the Logistic Regression (Scikit function), where the penality used
is the norm l1 and the class weight is balanced, which mean that we try to balance
the error based on the classes distribution (an error in a smaller class will have a
greater error instead of the error of a class with higher frequency). The new feature
space is after used by a Logistic Regression (Scikit function) with norm “l2”.

The original model also include some features such as the sentiment of the
tweets, by using sentiment analyzer designed for social media. This kind of extra
features are not used in our replication because it allow us to be more free with scal-
ing in another datasets and because we are interested in just the text as feature for
the decisions that classifier will do. These kind of features can maybe help the clas-
sifier but for an accurate discussion we need to analyze in details the effect on the
classifier.

In the paper, they evaluate the performances with a classification report (func-
tion of scikit learn) and a confusion matrix. As we can see from the comparison
between tables 5.3 and 5.4 and the Figure 5.1 , the choice of using only the n-gram
with TFIDF and not external features affected a bit the performances of the classifier,
but in general they still the same.

Table 5.4 shows that the majority of the errors came from the zone of hateful and
offensive. Here, the possible explanation is derived from the fact that those classes
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precision recall f1-score support
0 0.44 0.59 0.51 164
1 0.96 0.91 0.93 1905
2 0.83 0.94 0.88 410
avg / total 0.91 0.89 0.90 2479

TABLE 5.3: Original Classification Report

precision recall f1-score support
0 0.45 0.57 0.50 164
1 0.96 0.91 0.93 1905
2 0.82 0.94 0.88 410
avg / total 0.91 0.89 0.90 2479

TABLE 5.4: Replicated Classification Report

(A) Original (B) Replicated

FIGURE 5.1: Confusion Matrices

have a consistent number of relevant words in common (e.g. “bitch” was in both
hateful and offensive top 10 words 4.2).

5.1.3 LSTM over T2 dataset

Badjatija et al. (Badjatiya et al., 2017) try to solve the problem of the hate speech
with the use of the deep learning . In their work, they experiment with differ-
ent approaches, as summarized in Table 5.5. The replications in this case are not
easy because the architectures are not described in detail in the paper and the github
repository does not contain the whole code for obtaining the same results.

In the replication I decided to focus only in the LSTM techniques with the 2
variants of Random Embedding and Glove Embedding (with the addition of the
GBDT), as a total of 4 models.

The difference between the random embedding and the Glove embeddings (Pen-
nington, Socher, and Manning, 2014) is that, while in the first case the vectors which
represent the words are initialized with random values, in the second approach the
vectors are initialized with vectors obtained by a train of these vector in a huge cor-
pus.
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Method Prec Recall F1

Baselines

Char n-grams + LR 0.729 0.778 0.753
TFIDF + Balanced SVM 0.816 0.816 0.816
TFIDF + GBDT 0.819 0.807 0.813
BoWV + Balanced SVM 0.791 0.7888 0.789

DNNs Only

CNN + RE 0.813 0.816 0.814
CNN + GloVe 0.839 0.840 0.839
Fast Text + RE 0.824 0.827 0.825
Fast Text + Glove 0.828 0.831 0.829
LSTM + RE 0.805 0.804 0.804
LSTM + GloVe 0.807 0.809 0.808

DNN + GBDT

CNN + Glove + GBDT 0.864 0.864 0.864
CNN + RR + GBDT 0.864 0.864 0.864
Fast Text + Glove + RE + GBDT 0.853 0.854 0.853
Fast Text + RE + GBDT 0.886 0.887 0.886
LSTM + Glove + GBDT 0.849 0.848 0.848
LSTM + RE + GBDT 0.930 0.930 0.930

TABLE 5.5: Deep Learning techniques applied. RE = Random Em-
bedding

The CNN architectures were avoided because our last model is a CNN with
GRU, and it allow us to have different architectures to compare between each other.
About Fast Text, we decided to avoid it because it is just a library which handle text
classification.

In the replications, while the LSTM + RE and LSTM + Glove gave us similar re-
sults, the addition of the GBDT didn’t gave the same results as the authors. While in
the second part with DNNs only, there is a use of a neural network with an embed-
ding representation, the idea of the third part (DNN + GBDT) is to use the DNN for
training the embedding and then use them as new feature space for the GBDT.

In the end, both LSTM with random embedding and glove are better of the ver-
sion of the GBDT and, for the next replications, we decided to use as best model of
the paper the LSTM with Random Embedding (f1 score obtained 0.806). The Glove
result is the same as authors, but it is slower in the pre-processing for loading the
embedding from a pre-build dictionary and the results are approximately equal to
the random embedding one.

While in the previous model a sentence was represented by an array, here we
have a matrix, where we have one row for each word in the sentence and the column
correspond to the embedding which represent the word. One issue of this approach
is given from the fact that we need to have all the input with the same size: for this
reason we need to use the padding, which mean adding some noise, or remove some
part of the sentence, in order to achieve the requirement. In this model, the padding
is the length of the biggest sentence. This problem can be avoided by using the li-
brary pytorch (Paszke et al., 2017), which allow to use the sentences with different
sizes; however authors uses Keras and we need to replicate these model faithfully.
In the case of random embedding, we have that the dimension of the embedding is
200, and the values at the beginning are initialized with random numbers. This pro-
cess is handle by the Embedding function provided by Keras (Chollet and François,
2015), which create a dictionary where each word has its own embedding. Here, the
embedding are trainable, which means that during the backward phase, the embed-
dings are updated in order to minimize the error.
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Dataset Evaluation
T1 0.82
T2 0.94
T3 0.92

TABLE 5.6: Original evaluations with F1 score micro over the three
dataset

The whole model is built using the Keras library, and it is build as following:

• Embedding(size = 200, length = maxpadding);

• Dropout(rate = 0.25);

• LSTM(units = 50);

• Dropout(rate = 0.50);

• Dense(units = 2);

• Activation(softmax).

The optimizer used is adam with the default settings, and the loss function the
“categorical cross entropy”. The model was trained with 4 epochs.

5.1.4 CNN + GRU over T1*, T2 and T3 datasets

The second deep learning approach is given by Zhang et al. (Zhang Ziqi, 2018),
where the idea is that the Convolution Neural Network combined with a Recurrent
Neural Network is able to capture in a more effective way co-occurring word n-
grams as useful patterns for the classification. The architecture in this case is well
described so it is easy to replicate the results shown. This model is tested with the
dataset T1*, T2 and T3.

The CNN + GRU is built entirely with Keras library (Chollet and François, 2015).
The input is an embedding matrix where the padding is fixed to 100 words. The
choice of this pre-setted number is given by the fact that the model should analyze
tweets, and the size should be enough. In this case the model uses word embedding
with 300 dimension pre-trained on the 3-billion-word Google News corpus. After
the embedding later there is a Convolutional Neural Network with 100 filters and
window size 100, and the layer is followed by a max pooling layer with a pool size of
4. The features generated are given as input to a GRU layer, which threats the feature
dimension as timestep and outputs 100 hidden units per timestep. The output is
flattened by a global max pooling layer, which take the maximum value for each
timestep dimension. In the end, there is a softmax layer, which uses the elastic net
regularization that linearly combine the norms L1 and L2. As loss function is used
the categorical cross entropy and as optimizer Adam.

The model is shown in Figure 5.2.

5.1.5 Transfer Learning

Recently, transfer learning has been argued to improve the performances in the text
classifications tasks “ULMFT”. The approach used by the authors uses a pretrained
Linguistic Model (LM), which is trained on a huge corpus; this LM is after optimized
for the current task, by using the dataset, and the new LM is used as backbone for a
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FIGURE 5.2: Architecture of CNN GRU

classifier, which is built on the top of that; Figure 5.3 summarize the structure of this
model. The model consists in a regular LSTM. This LM is trained over WIkitex-103
(Merity et al., 2016) and it consists on 28595 preprocessed Wikipedia articles, for a
total of 103 millions of words. At this point, the LM is trained, and the second phase
is the fine-tuning for our target domain. This fine tuning uses two techniques:

1. discriminative fine-tuning: each layer uses different learning rates;

2. slanted triangular learning rates: for let that the model converge quickly, the
model at the beginning increases its learning rate, for reaching an optimal re-
gion quickly, and after the learning rates will decrease after every epoch.

Finally, for the classification, the layer which produce the distribution of the words
is truncated and substituted with the target layer (one output for each class). The
weights that connect this layer to the network must to be learned; the gradual un-
freezing technique is used, where for few epoch we train the entire classifier, where
only the last layer’s weights are trained, and after we allow the learning for few
epochs also to the previous layer, and so on.
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FIGURE 5.3: ULMFiT structure

5.2 Evaluations

It is the time for answering two questions:

• how well these models perform?

• how well these models scale?

We can answer to these question by analyzing the models in two scenario:

• replication and re-training;

• cross application between datasets.

In this section we present the analysis only for the two classes models, where for
the dataset T1 we combined the offensive class with the neither, and in dataset T2
we combined the racism class with the sexist one. This choice allow an alignment
between the datasets, where all of them contain two classes: hate speech and not
hate speech.

5.2.1 Evaluation Metric

The chosen metric is the F1 score with the “macro” variant, provided by Scikit Learn
(Pedregosa et al., 2011). This metrics allow us to understand how good is a model,
by also considering of the problem of the unbalanced dataset. This is a problem,
because we care about a good classification of hateful contents and we need to give
importance to the error that the classifiers will make in this class.
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Accuracy F1 micro F1 weighted F1 macro
W 0.883 0.883 0.828 0.469
T1 0.774 0.774 0.676 0.291
T1* 0.942 0.942 0.914 0.485
T2 0.682 0.682 0.554 0.406
T3 0.83 0.83 0.753 0.454

TABLE 5.7: Median Classifier Evaluation

Let’s now think to a simple classifier which labels all the samples as part of the
majority class. Its performances are summarized in Table 5.7. It is easy to see how
metrics like accuracy doesn’t take into account too much the problem of the unbal-
anced dataset. The F1 macro seems to be the only one to observe this problem and
this is the reason why we choose this metrics for the following evaluations.

5.2.2 Replication and Re-Training

Every model that we have been presented was trained with a specific dataset, and
the choice of some hyper-parameters were taken due to the nature of the dataset.
Here, we try to retrain the models with different datasets and evaluate them, by
using the same original hyper-parameters; this choice can affect the performances of
the models over the new datasets. For allowing a comparison of the performances
between the models, each datasets were splitted in training and test set in the same
way for every training. This allow us to avoid penalizations due to the randomness.

Model
Dataset

W T1* T2 T3
LR char 0.86 0.63 0.82 0.85

MLP char 0.86 0.63 0.81 0.85
CNN+GRU 0.87 0.70 0.83 0.81

LSTM 0.85 0.64 0.78 0.79

TABLE 5.8: F1-scores (macro-averaged across classes) of the two-class
models trained and evaluated on each dataset (datasets used in orig-

inal papers in bold)

As we can see in Table 5.8, the results indicate that the models are roughly equally
effective when applied to different texts, provided that they were trained using the
same kind of text. Inferior performance on T1* by all models can be explained by two
factors. First, the dataset is highly imbalanced, with the “hate” class taking up only
5% of the training set. Second, this dataset is derived from Davidson et al.’s original
three-class corpus that separates offensive speech from hate speech. To constrain clas-
sification into only two categories, T1* assimilates the “offensive” and “non-hate”
classes into one. Of these, the offensive class dominates, covering roughly 80% of
the combined class in the training set. It may have more overlap with hate speech
than non-offensive speech, making classification more challenging.

About the transfer learning, this architecture doesn’t reach the baselines of other
papers, where in the Twitter dataset results (F1 score macro) are 0.62 (T1), 0.75 (T2),
0.80 (T3), where the baselines are 0.66 (T1), 0.84 (T2), 0.86 (T3). We did not consider
these models for the further analysis due to the complexity of the model and the
huge demand of resources.
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5.2.3 Cross Application Between Datasets

To estimate the adaptivity of models pre-trained with one dataset, we applied them
to all test sets. We first trained each model with the training data used in the original
paper presenting it, and then applied the resulting classifier to the test sets of all four
datasets.

Model, training dataset
Dataset

W T1* T2 T3
LR char, W (0.86) 0.37 0.50 0.24

MLP char, W (0.86) 0.38 0.50 0.25
CNN+GRU, T1* 0.11 (0.70) 0.48 0.51
CNN+GRU, T2 0.14 0.28 (0.83) 0.44
CNN+GRU, T3 0.13 0.48 0.50 (0.81)

LSTM, T2 0.23 0.33 (0.78) 0.47

TABLE 5.9: F1-scores (macro-averaged) of pre-trained two-class mod-
els applied to different test sets, with the original test set in parenthe-

ses

As we can observe from the results reported in Table 5.9, none of the pre-trained
models transfer well to any other dataset. These results indicate that linguistic hate
speech indicators are not well retained across different datasets. This may be due
to the lack of words shared between datasets, or differences between the relevant
features of particular subcategories of hate speech.

In Section 4.2.3 we discussed the similarity between the dataset, and we saw that
the similarity between the datasets were high, where the datasets were sharing the
common words. However, we showed that the vocabulary were quite different: this
could be the problem, were the words that are important for the classification are
not present in the dictionary of the classifier.

5.3 Swear Words Analysis

An important distinction can be drawn between hate speech and speech that uses
offensive vocabulary without being hateful. The latter is separated from hate speech
in Davidson et al.’s dataset T1 (Davidson et al., 2017). To our knowledge, this is the
only dataset (and paper) that distinguishes these categories. Especially given the
lack of any precise definition of hate speech in either legal or academic contexts, it is
important to investigate the extent to which existing approaches are sensitive to the
hateful-offensive distinction.

A particular concern is the extent to which two-class models assign offensive but
non-hateful text to the “hate” class. This can be treated as a false positive, assuming
the hateful-offensive distinction is appropriate. Of course, the assumption is not al-
ways clear: for instance, Google Perspective offers to detect “toxic” comments; but
whether “toxicity” should include all offensive text remains a subjective assessment.
Nevertheless, we maintain that there is a significant distinction between non-hateful
offensive speech and hate speech, and categorizing the former as “hateful” is prob-
lematic. To estimate the performance of the models on offensive but non-hateful text,
we applied the “offensive” data-points from T1’s test set to all two-class models, ex-
cept CNN-GRU trained on T1*, which is built from T1 and hence not independent
of the task. As seen in Table 5.10, CNN+GRU trained on T3 was the only model
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to succeed in this task. All other models performed on a random or below-random
level.

Model, training dataset Assignment to non-hate
LR char, W (Wulczyn, 2017) 0.40

MLP char, W (Wulczyn, 2017) 0.36
CNN+GRU, T2 (Zhang Ziqi, 2018) 0.23
CNN+GRU, T3 (Zhang Ziqi, 2018) 0.89
LSTM, T2 (Badjatiya et al., 2017) 0.36

TABLE 5.10: Performance of two-class models on offensive but non-
hateful speech

Additional experimentation revealed that the seeming success of CNN+GRU
trained on T3 was due to the prevalence of unknown words in the “offensive” test
set, mapped to the unknown token (<unk>). This token was associated with the
non-hateful class in the model, and on average over 40% of words per sentence in
this test set were mapped to it. Hence, the performance simply reflected the model’s
small vocabulary.

The results are suggestive of the problematic and subjective nature of what
should be considered “hateful” in particular contexts. As the labels have been man-
ually gathered via crowd-sourcing, there is no guarantee that labels from different
people were consistent. Within datasets, this problem has can be addressed to some
extent by majority voting, but there is no method of guaranteeing agreement be-
tween datasets. It seems that the labeling in the two-class models represents offen-
siveness more than hatefulness as such.

Manual experimentation suggests similar conclusions concerning Google Per-
spective. Some examples of Perspective’s scores on non-hateful sentences appended
with a common English curse-word (marked with “F” here, but in original form in
the actual experiment) are presented in Table 5.11.

Sentence→Modified sentence Old→ New score
You are great→ You are F great 0.03→ 0.82
I love you→ I F love you 0.02→ 0.77
I am so tired→ I am F tired 0.06→ 0.85
Oh damn! → Oh F! 0.64→ 0.96
Food is amazing→ Food is F amazing 0.02→ 0.68

TABLE 5.11: Google Perspective “toxicity” scores on non-hateful sen-
tences with and without a curse word

None of the examples in Table 5.11 are hateful, but the curse-laden variants are
all considered “toxic” with a high likelihood. Clearly “toxicity”, as Perspective cur-
rently classifies it, is not assimilable to hate speech in any substantive (or legal) sense.

5.4 Analysis of the Behaviour

In this section I will try to analyze in details how the models work and we will try
to understand why samples are classified in a specific way.
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The analysis are done by looking the effect in the classification for every compo-
nent of the sentence (ngrams for the TF-IDF algorithms, words for the embeddings).
Clearly, here it is not consider the effect of the combinations of the elements, but we
can just have an overview and an idea of what the problems are.

During this process I will do some considerations about the sentences that for
someone else can be wrong (due to the difficult nature of the hate speech identifica-
tion).

Also, we will see some examples of the offensive classification, by trying to un-
derstand the results of the models against the offensive class of T1.

At first we analyze the confusion matrices for the models and let’s try to under-
stand where the errors occur, which are summarized in Figure 5.4. In W, the models
seem to work in the same way; here, both models perform very well in the non toxic
classification, while the problem is in the huge amount of error on the toxic class,
which is also the minority class in the dataset. As we can see, the models in general
mis-classify toxic comments, by preferring the labelling to the non toxic class. Now,
let’s see the LR Word over T1: few mistakes are done between the neither class and
the hate and offensive classes, which mean that it is not a difficult task to separate
these two groups. The major error, as in the previous case is given by the hate sen-
tences which are classified as offensive, which is the majority class (this behaviour
is true for all the models, where the models assign more the bigger class). In all the
models the non hateful classes are easy to recognize, while the hateful have a lot
of mistakes. The CNN GRU over T1*, shows that only the 31% of hate sentences
are correctly classified (1 out of 3), showing and highlighting that the problem be-
tween the hate class and the swear word must to be take carefully and considered
for the analysis. As discuss in Chapter 3, we cannot let that the models’ judgments
are biased by the swear words.

LR char over W

Sentence 1
You are a child

This sentence should be classified as non toxic, while is classified as toxic with a
strong probability: 0.92. Here it seems that there are not elements that make the
sentence toxic. By looking through the ngrams of the sentence, it seems that the
ngram“you a” is toxic and it could affect the prediction.

Sentence 2

== I HAVE A HARD ON FOR WAR == SUP, NIGGS???????????????

Classified as non toxic, it is toxic (0.87). The toxicity, in my opinion, is given by the
term niggs. Unfortunatly, non of the ngrams that involves this word are recognized
as toxic.

Sentence 3
Dylan’s a pedophile

Classified as non toxic, it is toxic (0.89). The toxic ngrams are “s a p”, “pe”, not
enough considering that there are 61 ngramns involved. None of these words alone
are toxic, but the combination of those are toxic. In my opinion here the problem
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is due to the representation, where the TF-IDF represent a sentence by loosing the
relationships between words.

Sentence 4

== Cunnywafts == Nothing but a group of mediocre cunnywafts

True label: 0; predicted : 1 (0.51). This is a case of predictions on the border. Here,
the models considers 147 ngrams. The toxic ngrams are “dio”, “cun”, where the first
one is super toxic (probability equal to one of being toxic). Probably, the high ratio
of non toxic decrease the final probability.

Offensive Sentence 1
is that ya bitch

Toxicity at 0.93 as probability. The reason is that there are the ngrams of “you” and
“bitch” that are considered as toxic, where the latter one has a huge toxicity value.
Here, the use of a swearword conditioned a lot the classifier.

Offensive Sentence 2

cant you see these hoes wont change

This sentence is correctly predicted as non toxic (0.95). The question is: is the clas-
sifier that is working properly or is just that he doesn’t recognize the swearword
“hoes”. In the ngrams lists, we do not have any “hoe” or “hoes” ngram. Moreover,
in the training set these words appears in 8 sentences, a number which is too small
for having appearing in the top 10000 ngrams. For this reason, this classification
is correct just because of wrong reasons: if we use this swearwords for offending
someone, this should be toxic. If, for example, given the following:

You are a hoe

which clearly is hateful, the classifier classify it as non toxic with the probability
of the 83%. The occurrences with the words “hoe” or “hoes” is more than 3000,
where in 2884 cases it was classified as non toxic; this raise the problem that a lot of
examples in the offensive list of T1 are well classified due to a lack of information in
the training set. This behaviour could occur also with other swearwords.

5.4.1 MLP char over W

This model shares the dataset with the previous one, which means that the common
words / ngrams are the same, Let’s see if the errors are comparable with the previous
case.

Sentence 1
You are a child

This sentence is mis-classified as in the previous model (toxic instead of non toxic).
This denote a similarity in the behaviour between the logistic regression and the
Multilayer Perceptron with 3 layers. The sentence you are a is classified as toxic with
a probability of 0.92.
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Sentence 2
Dylan’s a pedophile

Classified as non toxic with a probability of 0.75, it is toxic. Also for this sentence, as
for the previous model, the problem is given by the ngrams which cannot capture
the toxicity of this sentence. This also show another proof of the similarity of these
two models.

If we compare the predictions of LR char and MLP char over the same test set
of W we can see that the 98.85% of the predictions are the same, which means that
the models works practically in the same way. This model also shows that sentences
such as you are a hoe are mis-classified, and it has the same problem with the offensive
words: the sentence this CD is fucking amazing is toxic (0.97) and the decision is biased
by the swear word “fuck”.

5.4.2 LR word over T1

This is the special model with the 3 classes. It is curious now to see if and how the
offensive classes are handled.

Sentence 1
fucking queer

Hate: 0.7 - Offensive: 0.3 - Neither: 0
The correct answer is 1 (offensive). Honestly, in my opinion, this is an example

of hate speech because of the meaning of “queer”. It is easier to analyze this model
because it uses the words as representation in the ngrams; while the word “fucking”
alone is consider offensive (correct, it is a taboo word), “queer” is considered hateful
(0.58), while the combination of both generates a probability of being hateful equal
to 0.7.

Sentence 2
God damn birds

Hate: 0.1 - Offensive: 0.22 - Neither: 0.78
The true label is offensive. Here, the word “damn” (alone) is classified as of-

fensive, but the words “God” and “birds” are not. Probably, here it is a problem of
the training set, where the ngram “God damn” should be more frequent for being
classified as offensive.

Sentence 3
But rich is a light skin coon. So it’s expected

Hate: 0.5 - Offensive: 0.15 - Neither: 0.35
The real label is neither. Here, the classifier sees the word “coon”, which is a very

offensive word for black people.

Offensive Sentence 1
this CD is fucking amazing

This sentence is correctly classify as offensive.
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5.4.3 LSTM RE T2

Sentence 1
yes. yes please. take my money

It is classified as non hateful, while it is. Here, a lot of mis-classification are difficult
to understand because they refer to facts such as TV-shows and with out the context
are difficult (e.g. a lot of #mkr hashtag).

Offensive Sentence 1
this CD is fucking amazing

Non Hateful: 1 - Hateful: 0
This sentence is perfectly classified as non hate speech.

Offensive Sentence 2
God damn

Non Hateful: 0.7 - Hateful: 0.3
Also this sentence is correctly classified.

Offensive Sentence 3

You ever fuck a bitch and she start to cry? You be confused as shit

Non Hateful: 0.14 - Hateful: 0.86
This sentence which contains a lot of slang is classified as hateful “bitch”.

5.4.4 CNN GRU T1’

Here I just consider the case of the model trained over the dataset T1’ because it is
more interesting to see how the model handle the differences between offensive and
hateful sentences.

Sentence 1
fucking queer

Hateful:0.68 - Non Hateful: 0.32 Here we have the same problem as in the LR word
model. The same considerations here are done.

Sentence 2
it’s your man make me white trash cousin fucker

Hateful:0.65 - Non Hateful: 0.35 This should be non hateful but just offensive. Here,
the slang and the use of swear words make the sentence hateful for the classifier.

Offensive Sentence 1
this CD is fucking amazing

Hateful:0.15 - Non Hateful: 0.85 It seems that the use of swear word is well classified
thanks to the non hate class which contain also the offensive class.
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5.5 Augmentation

Due to the limit amount of examples available for each dataset, we try to apply a
couple of augmentation technique:

• Google Translate;

• Synonimous Replacement.

In this case, the models are retrained by using the default hyper-parameters. How-
ever, none of these techniques gave us successful results. The idea behind these
approaches is to generate sentences with the same meaning but different structure.

Google Translate This technique uses the Google API in order to translate sen-
tences. The idea is, given a sentence si, which is written in English, we translate it in
another language, such as Spanish, and we re-translate it in English. If the sentence
is different from the original one, we insert it in the augmented dataset, otherwise
we just discard it. For example, given the following sentence:

Hi buddy,

the Spanish translation is:
Hola Amigo,

and, if we come back to English, the result will be:

Hello friend.

The two sentences have the same meaning, but they uses different words.

Synonymous Replacement The algorithm is to replace some words with theirs
synonymous in the sentences. Given a sentence s, first the algorithm will split it
by using the word_tokenize funcion, provided by NLTK, which create the tokens of
the sentence. This list of words are processed, and, by using the wordnet funcion
(NLTK), we select randomly some words and we replace those with the synonymous
contained in the wordnet. For example, given:

The cat is on the table,

the algorithm will produce:

the kitten is on the table.
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(A) LR char W (B) MLP char W

(C) LR word T1 (D) LSTM RE T2

(E) CNN GRU T1* (F) CNN GRU T2
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(G) CNN GRU T3

FIGURE 5.4: Confusion Matrices of the models
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Chapter 6

Attacks

The goal of the adversary which is considered in this work is to fool a detection
model into classifying hate speech input as ordinary speech. The assumption that we
made is that the adversary has complete control of the input and he/she can modify
it in order to evade detection, while retaining the semantic content of the original
sentence hate speech. Another assumption is that the adversary has not white-box
access to the model parameters. The adversary model is relaxed in one attack, where
some knowledge of the training set is required. Classifiers that rely on surface-level
features can be attacked with malformed input, constituting evasion attacks (Biggio et
al., 2013). In this Chapter we describe six evasion attacks against the seven classifiers
that we replicated (Section 6.1), all attacks are based around altering input text with
easily implementable and automatic methods. We categorize the attacks into three
types, and experiment with two alternatives from each:

• Word changes

– Insertion typos;

– Leetspeak;

• Word boundary changes

– Inserting whitespace;

– Removing whitespace;

• Word appending

– Appending common words.

– Appending non hateful words.

We differentiate the attack types, because they target distinct (albeit sometimes
overlapping) aspects of the classifier. Word changes are done to change the identities
of words. For word-level models, the new identities are likely to become “unknown”
(i.e. non-identified tokens denoted by “unk” ), while retaining the readability and
semantic content of the original text to a maximal extent from a human reader’s
perspective. Word boundary changes, on the other hand, not only alter word iden-
tities but also the sentence structure from a superficial perspective. Finally, word
appending makes no alterations to the original text, but only adds unrelated mate-
rial to confuse classification. There are theoretical reasons to believe certain attacks
to be more effective against some classifiers than others. In particular, as word tok-
enization plays no role in character-models, it is clear that these are less susceptible
to word-boundary changes than word-models. Furthermore, character-models are
expected to be more resistant to word changes, as many character n-grams are still
retained after the transformations are applied. In contrast, all word-based models
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are expected to be vulnerable to attacks that alter word identities (i.e. both word
changes and word-boundary changes). Word appending attacks, in contrast, have
no a priori reason to work better against character- than word-based models, or vice
versa. We applied the attacks to all seven classifiers, by poisoning the hate class
samples from the respective test sets. We analyze also some counter measures for
the attacks 6.2. The results are shown in Section 6.3. Based on the obtained results,
we combined the most powerful attacks, and we present the “Love Attack” (Sec-
tion 6.4). We will conclude the chapter with some considerations about the trade-off
between the performance and security aspect (Section 6.5).

6.1 Adversary models

In this section we will explain in more details the algorithms involved in the attacks.

6.1.1 Word Changes

Word change attacks introduce misspellings or alternative spellings into words.
They may make words entirely unrecognizable to word-based models, and change
the distribution of characters in character-based classification. The aim of these two
attacks is to make unrecognizable the words which are modified in such a way that
a human being can still recognize the meaning of those, while the classifier not.

Inserting Typos

In 2017, Hosseini et al. (Hosseini et al., 2017) showed that Google’s “toxicity” indica-
tor Perspective could be deceived by typos. However, Perspective has since been up-
dated, and the examples the authors provided no longer succeed to the extent they
did then. We review these results in Section 6.3. Still, we consider the proposal to be
worth further investigation with larger datasets and automatic typo-generation.

Algorithm As an attack, typo generation has three desired properties: (i) reducing
the detection likelihood of hate speech, (ii) avoiding correction by automatic spell
checkers, and (iii) retaining the readability and meaning of the original text. If the
second goal is not met, the defender can include a spell-checker as a pre-processing
stage in the classification. Satisfying the third goal requires the word to remain rec-
ognizable, and not to be mapped to some other word in the reader’s mental lexicon.

To make the attack successful, word-level changes must not only fool the clas-
sifier, but be human-readable and retain the original interpretation to a maximal
extent. This means that we cannot simply introduce typos via random changes to
words. Instead, the change must have minimal impact on readability.

We used the empirical finding from cognitive psychology that characters in the
middle of words have a smaller effect on readability than the first and last characters
(Rayner et al., 2006). To maximize understandability, we restricted the alterations to
a single switch between two characters. The algorithm switches the order of two
characters in the word, excluding the first and final character. The probability of
choosing particular characters is calculated by two factors: characters closer to the
middle of the word are preferred, and characters that are close to each other are pre-
ferred. So, first, a character is chosen between the second and second-to-last charac-
ter of the word, based on a Gaussian distribution centering in the middle character
(hence, only words with four of more characters are applicable).After having a set o
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values, one for each character, the set is normalized, in a way that the sum is equal
to one (each element is divided by the sum of the set): in this way we have a set
of probabilities. Next, a second character is chosen based on the combined effect of
the first distribution and a second Gaussian distribution centered in the first selected
character. These characters are then switched to create the typo. The Gaussian distri-
bution is defined as N(0, 0.5), where the value of sigma is obtained by experimental
tests. Every character of the word (not the extreme) is mapped into a real values in
the range [-1; 1] and the probability is obtained by the value of the Gaussian in that
point.

Example of execution Let’s say that we want to apply the algorithm to the word
“swords”. First, the algorithm excludes the border characters, so the word will be
word. The first thing is mapping the characters into the x axis:

[−1,−0.33, 0.33, 1].

Now, let’s take the value of the Gaussian N(0, 0.5) in each point:

[0.11, 0.64, 0.64, 0.11];

normalized:
[0.07, 0.43, 0.43, 0.07],

and after the cumulative sum:

[0.07, 0.50, 0.93, 1.0].

For picking the character, the algorithm generates a sample from the uniform distri-
bution U(0,1). The character choose will be the one which range contain the extracted
sample in the cumulative sum. Suppose that the extracted sample from the uniform
distribution is 0.65, which correspond to the letter “r”. It’s time to choose the second
character, and the Gaussian it will be defined as N(0.33, 0.5), where 0.33 correspond
to the value of “r” in the x axis. The second distribution is extracted in the same
way as in the first part, where each point will have the correspondent value of the
Gaussian curve:

[0.02, 0.33, 0.80, 0.32].

As described in the previous paragraph, we want to now to pick a new character
which is close to the selected one, and having a greater probability for those char-
acters which are close to the center. So, let’s multiply the new distribution with the
previous one:

[0.11, 0.64, 0.64, 0.11] ∗ [0.02, 0.33, 0.80, 0.32] = [0.001, 0.14, 0.3412, 0.02].

We want to avoid to extract the same character, so it’s values will be set to 0:

[0.001, 0.14, 0, 0.02],

and the vector normalized:
[0.01, 0.84, 0, 0.14].

At this point, the algorithm calculate the cumulative sum of the vector, extract a
sample from the Uniform distribution U(0,1) and the correspondent character will
be switched with the previous one.
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Leetspeak

In addition to typos, we also consider a simplified variety of leetspeak , which is a
type of Internet slang replacing characters with numbers. (Different variants may in-
volve more alterations, but we only consider character-to-number alterations here).
Leetspeak has been shown to be easily readable to humans (Perea, Duñabeitia, and
Carreiras, 2008), but will be unrecognizable to word-models unless it is also present
in the training set.

Algorithm The leetspeak transformation algorithm is deterministic and it mapped
some characters into numbers or other symbols. In this algorithm version, the map-
ping is defined as following:

(a : 4), (e : 3), (l : 1), (o : 0), (s : 5).

The changes retain readability well, given the visual similarity between the original
and leet characters (Perea, Duñabeitia, and Carreiras, 2008). Clearly, this attack is
deterministic, which means that it could be esily mitigate in the preprocessing phase
by substituting these kind of transformations in the words.

6.1.2 Word Boundary Changes

The tokenization attack differs from word transformation by retaining word-internal
characters, but introducing or removing characters that result in a word-based
model separating between different tokens. We use space as the most evident choice.

Algorithms We implemented two simple algorithms for introducing or removing
whitespace. We predict removal to be more effective against word-based models
on theoretical grounds. Character-based models are likely not highly susceptible to
either variant.

• Inserting Whitespace: Word-based models rely on tokenizing the text into a
sequence of words, based on characters treated as word-separators. Therefore,
a simple way to make words unrecognizable is to change the tokenization by
introducing additional separators between words. The effect of this attack on
readability is small, but it results in most words becoming unrecognized by the
classifier. We used a simple approach of splitting each (content-)word into two
by randomly selecting a character from the word and adding a space before
it. In a word-based model a previously recognized word will turn into <unk>
<unk>;

• Removing Whitespace: Conversely, removing all spaces leaves a single <unk>
datapoint. Word-based models’ performance will then depend entirely on how
this single token is classified. Character-models, in contrast, will only lose the
information related to the space token, which might deteriorate their perfor-
mance, but likely not much.

6.1.3 Word Appending

All text classification is based on the prevalence of class-indicating properties in the
data. Therefore, adding material that is indicative of one class oven another makes
it more likely for the classifier to assign the sample to that class. In many tasks this
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is appropriate, but hate speech detection constitutes an important exception. Hate
speech and non-hate speech are not reversible: adding hateful material to ordinary
speech will turn the text into hate speech, whereas adding non-hateful material to
hate speech may not change its status. This vulnerability invites a possible attack,
where non-hateful material is inserted to hate speech to change the classification. For
our attack model, we assume that the adversary is aware of the use of additional un-
related words to distract automatic classifiers. Assuming also that the beginning of
the additional material is clear enough from the discourse, readability and semantic
retainment are secured.

Algorithms We generated a random number (between 10 and 50) or words at the
end of each text in the “hate” class of the test set. The bounds of 10 - 50 are given
by experimental tests. The words were randomly chosen from two possible sources,
yielding two varieties of the attack.

• Appending common English words: Google has provided a list containing the
most common words appearing in a large book corpus (Michel et al., 2011). We
used random words from the top 1000 of these words, excluding “stopwords”.
The rationale behind this attack is that it requires no knowledge of the training
data on the part of the attacker. Further, the common English words are likely
to be contained in the training corpus of many different datasets;

• Appending common “non hate” words: Here, we assume the attacker knows,
or correctly guesses, a list of words in the training data’s non-hateful class. He
then appends the text with randomly chosen common (content) words from
this class. We are still not assuming white-box access to the model itself.

6.2 Mitigation

The aim of this section is to study if there are techniques which can easily mitigate
the effect of a specific attack.

Word Changes We tried two methods of improving classifier performance on test
data modified via word changes: adversarial training, and adding a spell checker to
test set pre-processing. In the adversarial training we augmented the training set
with stochastically transformed versions of the original training examples, for all
classes (doubling the training set size). The purpose of adversarial training was to
add transformed varieties of each word into the model’s vocabulary, making it more
likely for the model to associate them with the correct class. The random nature
of the typo-algorithm limits the scalability of the approach with long words, as the
range of possible typos becomes larger. In contrast, given the deterministic nature of
our leetspeak algorithm, we can expect adversarial training to work well against it.
About the spell checker, we added a spell-checker to the pre-processing stage of the
test set to find out how resistant our typo-introduction algorithm was to automatic
correction. We used Python’s Autocorrect library for this.

Word boundary changes For this attack we tried only with the adversarial train-
ing. For the whitespace insertion attack, we appended the training set with ran-
domly split versions of the original data to include word-parts into the model’s vo-
cabulary (thus doubling the training set). Given that an n character word can be split
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in two in n− 1 possible ways, going through all possible combinations of splits in a
sentence quickly results in a combinatory explosion. Hence, the effect of adversarial
training is expected to be limited on analytic grounds. For completeness, we also
conducted adversarial training via space removal, although this is close to useless
on the grounds that it only adds whole comments as single words to the model vo-
cabulary, and associates them with one class. As this method can only have an effect
if it encounters the exact comment again, it cannot scale and hence its relevance is
close to none in word-based models. Character-models, in contrast, can make use of
it, but its inclusion is mostly redundant, as the data points are not changed much in
comparison to the originals. Removing spaces: Another mitigation method is avail-
able only for character-based models, where spaces are removed from both training
and test data at the pre-processing stage. This method will by necessity remove
any effect of adding spaces, but will also remove potentially relevant information
from the data, as one common character is removed entirely. The effectiveness of
this mitigation method thus depends on the relevance of the space character for the
classification.

Word Appending The adversarial training in this case is similar for both attack,
where we just add noise in all the sample of the dataset: for each sample, we add a
copy of it and add from 10 to 50 random words, which are picked from the dictionary
(Google common words for the first attack, non hateful words from the second one).
The dataset also in this case will be doubled.

6.3 Results

We performed our six attacks on each of the seven model-dataset combinations repli-
cated from prior work. This yields 42 attacks in total. We used adversarial training to
mitigate all attacks, and tried additional defense methods for the typo attack (spell-
checking) and tokenization attacks (space removal in training; this method is only
available for character-models). Attack effectiveness varied between models and
datasets, but the performance of all seven hate speech classifiers was significantly
decreased by most attacks. Word-based models were most affected by tokenization
changes, and character-based models by word appending. A significant difference
between word- and character-based models was that the former were all completely
broken by at least one attack, whereas the latter were never completely broken.
The two character-models performed comparably across all attacks. The training
dataset had a major influence on attack resilience, as demonstrated by the differ-
ences between the CNN+GRU model trained with T2 and T3, respectively. How-
ever, CNN+GRU trained on T2 was more resilient to all attacks than LSTM trained
on T2, indicating that model choice also had an effect. The results from all attacks
and their mitigation are presented in tables 6.1,6.2 and 6.3. Since our attacks affect
data points in the “hate” class, we only report the F1-scores from this class.

We additionally experimented with Google Perspective, using example sen-
tences from Hosseini et al. (Hosseini et al., 2017), reproduced below.

• S1: Climate change is happening and it’s not changing in our favor. If you
think differently you’re an idiot;

• S2: They’re stupid, it’s getting warmer, we should enjoy it while it lasts;

• S3: They are liberal idiots who are uneducated;
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• S4: idiots. backward thinking people. nationalists. not accepting facts. sus-
ceptible to lies;

• S5: They are stupid and ignorant with no class;

• S6: It’s stupid and wrong;

• S7: If they voted for Hilary they are idiots;

• S8: Anyone who voted for Trump is a moron;

• S9: Screw you trump supporters.

Hosseini et al. provide examples of introducing manual typos, punctuation and
spaces in each sentence, and demonstrate its effects on Google Perspective. We ap-
plied the same modifications to the same example sentences, but received much
higher toxicity scores. This indicates that Perspective has been updated, and now
performs better on adversarial data.

Word changes Word-models were more susceptible to leetspeak than typos,
whereas no clear difference can be found in character-models. In addition, word-
models were much more vulnerable to both attacks than character-models. Adver-
sarial training had a major positive effect on performance against both attacks, but its
effect was larger on the leetspeak attack. This is unsurprising given the deterministic
nature of the leetspeak algorithm. The determinacy also indicates that the leetspeak
attack could easily be mitigated by a counter-algorithm transforming numbers into
corresponding characters.

Models Dataset Baseline
Typos Leet
A AT SC A AT

LR char W 0.75 0.60 0.71 0.68 0.61 0.74
MLP char W 0.75 0.55 0.71 0.68 0.59 0.73
CNN + GRU T1* 0.43 0.31 0.35 0.36 0.00 0.33
CNN + GRU T2 0.76 0.27 0.67 0.68 0.09 0.77
CNN + GRU T3 0.69 0.23 0.61 0.43 0.03 0.76
LSTM T2 0.70 0.40 0.66 0.67 0.19 0.71
LR WORD T1 0.50 0.30 0.42 0.37 0.04 0.48

TABLE 6.1: Word Changes: F1-scores on the “hate” class from at-
tacks and mitigation.A: Attacks, AT: Adversarial Training, SC: Spell

Checker

Word boundary changes Neither character-model was affected by the whitespace
insertion attack, but the performance of both was markedly decreased by whites-
pace removal. We suggest this may be due to the fact that whitespace is involved
in the beginnings and ends of words. Unlike adding whitespace, removing it abol-
ishes all n-grams concerning word boundaries, which may be especially relevant for
classification. All word-models were completely broken by white space removal,
and severely hindered by whitespace addition. As expected, adversarial training
had no impact on whitespace removal. Resistance to whitespace addition, in con-
trast, was improved, and reached levels close to the baseline, differing from it only
6 - 10%. Overall, removing whitespace was much more effective than its addition
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for all models, both as an attack and in avoiding adversarial training as mitigation.
Character-models performed slightly worse when trained with- out spaces, but not
much, the largest drop in F1-score being 3%. We conclude that removing spaces in
pre-processing during both training and testing makes character-based models re-
sistant to tokenization attacks with only a minor reduction in predictive power. No
comparable mitigation exists for word-models, where word boundary removal will
force the text to be tokenized as a single unk.

Models Dataset Baseline
Insert Remove
A AT RW A AT RW

LR char W 0.75 0.75 0.71 0.74 0.54 0.75 0.74
MLP char W 0.75 0.75 0.71 0.72 0.56 0.76 0.72
CNN + GRU T1* 0.43 0.04 0.34 - 0.00 0.00 -
CNN + GRU T2 0.76 0.43 0.66 - 0.00 0.00 -
CNN + GRU T3 0.69 0.08 0.63 - 0.00 0.00 -
LSTM T2 0.70 0.42 0.64 - 0.00 0.02 -
LR WORD T1 0.50 0.18 0.44 - 0.01 0.02 -

TABLE 6.2: Boundary Changes: F1-scores on the “”hate class from
attacks and mitigation.A: Attacks, AT: Adversarial Training, RW: Re-

move whitespace

Word appending Unlike other attacks, word appending affected character- and
word- models comparably. Words from the non-hate class of the training set had
a systematically larger impact than common English words, but the difference was
very minor (1 - 2%) on character-models. The largest difference was observed on
the LSTM model, where non-hate words had almost twice the effect of common
words (0.27 vs. 0.15). The only model not affected by either appending attack was
the three-class word-based LR model from Davidson et al. (Davidson et al., 2017),
trained on T1. We attribute this result to the fact that the major non-hate class of this
dataset was the “offensive” class. Common English words or words from the “nei-
ther” class rarely indicate offensive speech, making it unlikely for the hate speech
to be classified as such. This data imbalance also likely explains the negative effect
of adversarial training, which was not observed on any other model. Adversarial
training worked very well on all two-class models, reaching predictive power close
to the baseline. The effect was the smallest with CNN+GRU trained on T1*, leaving
16% behind the baseline with adversarial training. The dataset T1* is drawn from
T1 by combining offensive and non-offensive ordinary speech into a single class. As
offensive speech takes the overwhelming majority of T1, T1* is highly imbalanced.
We therefore expect adversarial training to result in the appended words to associate
with the “non- hate” class more readily than the “hate” class, which would account
for its limited success in mitigation.
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Models Dataset Baseline
Common Non Hate
A AT A AT

LR char W 0.75 0.48 0.68 0.47 0.67
MLP char W 0.75 0.50 0.72 0.48 0.67
CNN + GRU T1* 0.43 0.04 0.38 0.01 0.27
CNN + GRU T2 0.76 0.64 0.75 0.50 0.74
CNN + GRU T3 0.69 0.18 0.70 0.14 0.64
LSTM T2 0.70 0.27 0.68 0.15 0.69
LR WORD T1 0.50 0.48 0.44 0.45 0.30

TABLE 6.3: Word Appending: F1-scores on the “hate” class from at-
tacks and mitigation.A: Attacks, AT: Adversarial Training

FIGURE 6.1: Typos Attack and Adversarial Training

FIGURE 6.2: Leet Attack and Adversarial Training
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FIGURE 6.3: Insert Whitespaces Attack and Adversarial Training

FIGURE 6.4: Remove White spaces Attack and Adversarial Training
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FIGURE 6.5: Insertion of Common Words Attack and Adversarial
Training

FIGURE 6.6: Insertion of Non Hateful Words Attack and Adversarial
Training
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6.4 Love Attack

Finally, we present the results from our attack combining the two most powerful
approaches we experimented with: space removal and word appending. Further-
more, instead of using a long list of common or non-hateful words, we minimize
the hindrance on read- ability by appending the text with only one word: “love”.
We choose this word because, intuitively, it is likely to negatively correlate with hate
speech. Our results support this hypothesis. As expected, the attack completely
broke all word-models, and significantly hindered character-models. Based on the
word appending results, the performance on character-models would decrease with
more appended non-hateful words. Since the original message can relatively easily
be recovered, and the single unrelated word has a minimal effect on readability (as-
suming it to be separable from the rest by the reader), we consider this attack highly
successful against state-of-the-art hate speech classification.

Models Dataset Baseline Love
LR char W 0.75 0.52
MLP char W 0.75 0.55
CNN + GRU T1* 0.43 0.01
CNN + GRU T2 0.76 0.00
CNN + GRU T3 0.69 0.00
LSTM T2 0.70 0.00
LR WORD T1 0.50 0.00

TABLE 6.4: Love Attack: F1-scores on the “hate” class from attack.

Sentence Original Common Space No Space Typo Leet Love
s1 0.95 0.83 0.77 0.46 0.9 / 0.35
s2 0.92 0.77 0.76 0.51 0.77 0.77 0.37
s3 0.98 0.78 0.64 0.51 0.77 0.86 0.37
s4 0.95 0.79 0.89 0.51 0.8 0.77 0.37
s5 0.97 0.91 0.82 0.51 0.51 0.73 0.37
s6 0.88 0.74 0.56 0.51 0.29 0.78 0.35
s7 0.99 0.82 0.51 0.51 0.88 0.83 0.15
s8 0.96 0.7 0.39 0.39 0.7 0.39 0.35
s9 0.9 0.42 0.56 0.56 0.9 0.94 0.35

TABLE 6.5: Perspective Attack: level of toxicity (0.5 the threshold)

6.5 Trade-off: Performance vs. Security

In this chapter we showed several attacks that degradate the performance of the
models. We can now think why this is happening and if there are some counter-
measures to avoid these phenomena. We can think the problem as a trade-off given
by the model, between the performance and the security, as shown by Grosse et. al.
(Grosse, T. Smith, and Backes, 2018).

For showing this concept, I built a simple classifier, an Adaboost (Zhu et al.,
2006), trained with 100 Decision Trees with different depths, from 1 to 5 (L. Breiman
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and Stone, 1984), and I train and evaluate the model over W. The sentences are rep-
resented as one hot encoding vectors of the top 10000 common words in the training
set. The models, that differs just for the depth of the trees, are evaluated twice, in
the test set and in the poisoned test set, which is the test set with the common words
appending attack. The results are shown in Figure 6.7.

FIGURE 6.7: Trade off performance - security: a comparison of the
performance over different depths of the Decison Trees in Adaboost

classifier

By increasing the depth, the model perform better, but also it is more vulnerable
for the attacks. It seems that the reason is that we are trying to let the model being
more elastic, to generalize more, but for this reason, it allows more vulnerabilities.
In the first model, the more restrictive, the attack does not work at all, but also the
classification performances is the worst.





67

Chapter 7

Considerations and Conclusions

In this work we evaluated the performance of seven state-of-the art hate speech
classifiers, which were presented in prior works. We showed that in general, the
discussed techniques work equally when trained with the task’s dataset, while their
classification performances go down when the models are tested in other domains.
It seems that the model architecture is not truly important, and complex models such
as Deep Neural Networks perform as well as simpler models, such as the Logistic
Regression.

Many problems rise during the cross application phase: the challenge seems to
be that the dataset are quite small (the largest one is around 100 thousand samples),
and from the similarity analysis of the dataset, we saw that the words used are quite
similar, which mean that in different times, some few terms made the difference
in the classification. The use of swearwords must be considered, for avoiding mis-
classifications sentences (offensive sentences perceived as hateful).

Another challenge with the data is given by the context, where, if for the offen-
sive classification we can look for some specific terms, in the hateful we cannot do
the same. For understanding this point, we can consider the following sentence:

He wants to kill all the Jews.

This, without any doubt, MUST to be considered as hateful sentence. Now, let’s
consider the following:

Hitler wants to kill all the Jews.

Are there any differences? How should we classify this sentence? As hateful or
not? The fact is that this is something that happened for real, and if we consider
this sentence as hate speech, we are not allowing free speak in our social network
/ blog about history, or science, or other topics that are not hateful. What are the
differences between these two sentences? Well, the point is just one, the second is
an historical fact. But we, as human being, we can see this difference, because we
are linking the meaning of the sentence with other knowledge: this means that the
text alone is not enough. In my opinion, in this early stage of text classification, we
cannot think that these sentences can be correctly classified. Just for showing, both
sentences are classified as Toxic (0.95 vs 0.92) in Google Perspective; I think that
the aspect of the context must be considered to during the data retrieval, where, if
future authors want to do this process, they need to be sure that those who vote will
classify the sentence based on just the mere text and not external knowledge, and in
this way, examples such as the previous two sentences will be considered as hateful.
But because of this limitation, hate speech detector cannot be used right now.

The current architectures also do not consider the problem of the adversaries.
The current architectures seems to suffers a lot the attacks, and all the word based
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models became unusable when we apply word changes, word boundary changes and
word appending. The simple love attack shows and highlight the problem, showing
that also in online algorithms such as in Google Perspective, the decision of the
model can be easily manipulated. Only the character architectures seems to be more
resistance to these attacks. In my opinion here, future authors can also avoid these
cases, but they should be aware to these problems, and, at least, restrict the domain
of their applications. If the attack scenario is considered, we should remember that
there is the trade-off between the performance and the security.

We can summarize these concepts in few points: (i) the architecture does not mat-
ter significantly in terms of classification performance, (ii) focus on the data collec-
tion and sanification, (iii) think about the swearwords, and the relevance of having
those in the non hateful class(es), (iv) remember the problem of the meaning of the
sentences (e.g. Hitler speech), (v) be aware of sentences’ manipulations and prepare
for adversaries, (vi) the trade off security-performance.

In conclusion, the hate speech is a problem that require a lot of effort for a solu-
tion, and it will be discussed in the following years. The current proposed solutions
seem to be far-away from a real development. The topic is serious, and more effort
must to be done.
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Appendix A

Published Paper

In this appendix we report the paper published at the 11th ACM Workshop on Arti-
ficial Intelligence and Security (AISec2018) (Gröndahl et al., 2018).
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ABSTRACT
With the spread of social networks and their unfortunate use for
hate speech, automatic detection of the la�er has become a press-
ing problem. In this paper, we reproduce seven state-of-the-art
hate speech detection models from prior work, and show that they
perform well only when tested on the same type of data they were
trained on. Based on these results, we argue that for successful
hate speech detection, model architecture is less important than
the type of data and labeling criteria. We further show that all
proposed detection techniques are bri�le against adversaries who
can (automatically) insert typos, changeword boundaries or add in-
nocuous words to the original hate speech. A combination of these
methods is also effective against Google Perspective – a cu�ing-
edge solution from industry. Our experiments demonstrate that
adversarial training does not completely mitigate the a�acks, and
using character-level featuresmakes themodels systematicallymore
a�ack-resistant than using word-level features.

1 INTRODUCTION
Social networking has changed the way people communicate on-
line. While the ability of ordinary people to reach thousands of
others instantenously undoubtedly has positive effects, downsides
like polarization via echo chambers [13] have become apparent.
�is inter-connectedness of people allows malicious entities to in-
fluence opinions by posting hateful material, also known as hate
speech.

Hate speech is not a universal concept. While laws targeting
speech seen as harmful have existed throughout human civiliza-
tion, the specific term was originally coined in the US in 1989 to
address problems of “harmful racist speech” that was nonetheless
protected in the US [4]. In 1997, the European Union defined “hate
speech” as texts that “spread, incite, promote or justify racial ha-
tred, xenophobia, antisemitism or other forms of hatred based on
intolerance.”1 Hate speech can be separated from merely offensive
or shocking content [7], although this distinction is non-trivial. In
this paper, we denote non-hateful speech as “ordinary speech.”

Typically, hate speech detection is cast as a classification prob-
lem. Standard machine learning algorithms are used to derive a
discriminative function that can separate hate speech from ordi-
nary speech. Although several hate speech detection mechanisms
have been reported in the research literature [24], to the best of

1h�ps://www.echr.coe.int/Documents/FS Hate speech ENG.pdf

our knowledge, there has so far been no systematic empirical eval-
uation comparing actual implementations of proposed models and
datasets.

We study five recent model architectures presented in four pa-
pers. One architecture [29] is trained separately on three different
datasets, giving us seven models in total. Six of these distinguish
between two classes [1, 28, 29]. One classifies among three, distin-
guishing between offensive and non-offensive ordinary speech [7].
Two models are character-based [28] (using character n-grams as
features) while the rest are word-based (using word n-grams or em-
beddings). In the original papers, each of the two-class models was
evaluated using a particular dataset. We show that none of the pre-
trained models perform well when tested with any other dataset.
�is suggests that the features indicative of hate speech are not
consistent across different datasets. However, we also show that
all models perform equally well if they are retrained with the train-
ing set from another dataset and tested using the test set from the
same dataset. �is suggests that hate speech detection is largely
independent of model architecture. We also tested each two-class
model on offensive ordinary speech [7], and observe that they tend
to classify it as hate speech. �is indicates that the models fail
to distinguish between hate speech and offensive ordinary speech,
making them susceptible to false positives. We experimented with
using a transfer learning approach [12]. Using a pre-trained lan-
guage model, we fine-tuned it for the classification tasks, and con-
ducted the same experiments. We show that the results are com-
parable but do not exceed the baselines.

Prior work has only considered what can be called naive adver-
saries, who do not a�empt to circumvent detection. We show that
all the models are vulnerable to adversarial inputs. �ere are many
ways of a�acking text-based detection models. A simple a�ack in-
volves changing the input text so that a human reader will still get
the intended meaning, while detection models misclassify the text.
We suggest three such alteration techniques, all of which are eas-
ily automated: (i) word changes, (ii) word-boundary changes, and
(iii) appending unrelated innocuous words. Implementing two va-
rieties of each a�ack, we show that all detection models are vul-
nerable to them, although to different extents.

Combining two of our most effective a�acks, we present a sim-
ple but powerful evasion method, which completely breaks all word-
based models, and severely hinders the performance of character-
based models. In addition, this a�ack significantly degreades the
performance of Google Perspective API,2 which assigns a “toxic-
ity” score to input text.

2h�ps://www.perspectiveapi.com/



We summarize our contributions as follows:

• �efirst experimental comparative analysis of state-of-the-
art hate speech detection models and datasets (Section 2).

• Several a�acks against effective against all models and pos-
sible mitigations (Sections 3).

• Asimple but effective evasionmethod that completely breaks
all word-based classifiers, and significantly impacts character-
based classifiers aswell as Google Perspective (Section 4.4).

• A review of the limitations in current methds, and desider-
ata for future developments (Section 7, Section 5).

2 REPLICATION AND MODEL COMPARISON
We begin by describing four recent papers [1, 7, 28, 29] on hate
speech detection (Section 2.1). We reproduce and systematically
analyze the performance of seven models presented in these pa-
pers (Section 2.2). �e datasets focus on partially disjoint aspects
of ”hate”: e.g., hate speech based on religion or ethnicity [29] may
not be highly similar to sexually connotated hate speech [1]. As
all datasets except one are drawn from Twi�er, they do not prop-
erly represent the range of online text. We believe future research
should focus on collecting and properly evaluating datasets, espe-
cially outside Twi�er.

We tested the performance of all pre-trainedmodels against four
datasets. We further re-trained the proposedmodels on each of the
other three datasets, and compared the results. All model architec-
tures performed comparably well, when the training set and test
set were taken from the same dataset. However, our results indi-
cate that hate speech detection is highly context-dependent and
transfers poorly across datasets.

2.1 Models and datasets
In this section, we describe all replicated models and their respec-
tive datasets. �e datasets, labelled W, T1, T1*, T2, and T3, are
summarized in Table 1, and Table 2 provides additional statistics
on sentence lengths. All datasets were divided between a training
set used to train the model, and a test set used for measuring model
performace.

Each paper proposes a different machine learning model for
hate speech detection: two papers use feature extraction -based
models [7, 28] and two use recurrent neural networks [1, 29]. All
models lowercase content and remove punctuation. We summa-
rize the models and datasets in Table 3, and discuss them in the
remainder of this section.
W [28]: As a part of Wikipedia’s “Detox” project targeting per-
sonal a�acks in Wikipedia’s edit comments, Wulczyn et al. [28]
experimented with logistic regression (LR) and multilayer percep-
tron (MLP) models, using n-gram features on both the character-
and word-level. Word n-gram sizes ranged from 1 to 3, and char-
acter n-gram sizes from 1 to 5. Labels were gathered via crowd-
sourcing, each comment being labeled by 10 evaluators. We de-
note this dataset as W. Wulczyn et al. made their tests on both
the one-hot encoded majority vote between the two classes (at-
tack or non-a�ack), and empirical distributions based on different
votes. �e former gives a classification, whereas the la�er may
be interpreted as class probabilities. On one-hot encoded labels,

Dataset Domain Classes (size) Source

W Wikipedia personal a�acks (13590) [28]ordinary (102274)

T1 Twi�er
hate speech (1430)

[7]offensive (19190)
ordinary (4163)

T1* Twi�er hateful (1430) [7]offensive ∪ ordinary (23353)

T2 Twi�er racist ∪ sexist (5013) [27]ordinary (10796)

T3 Twi�er hateful/racist (414) [29]ordinary (2021)
Table 1: Datasets used in our replication. Union (∪) denotes
the conflation of class elements.

Dataset Mean Std. Min. Max. 25% 50% 75%
W 84 161 1 9949 20 42 89

T1, T1* 20 12 1 321 11 18 27
T2 20 8 1 45 14 21 26
T3 20 7 1 48 16 21 25

Table 2: Sentence lengths in the datasets.

Model Dataset(s) Source
LR char W [28]
MLP char W [28]
LR word T1 [7]

CNN+GRU T1*, T2, T3 [29]
LSTM T2 [1]

Table 3: Replicated machine learning models.

character-models performed be�er both in the original paper and
our replication. We therefore use these models in our tests.
T1 [7]: Davidson et al. [7] presented a dataset with three kinds
of comments from Twi�er: hate speech, offensive but non-hateful
speech, and neither. �is is, to our knowledge, the only dataset
with such a distinction. �e hate speech data was collected by
searching for tweets with known hate speech phrases,3 and further
labeling these tweets with amajority vote from three CrowdFlower
workers each . We denote this dataset as T1. A vast majority of the
dataset contains offensive speech (76%), and only a small portion
actual hate speech (5%). Davidson et al. use a word-based logistic
regression (LR) classifier (1 − 3-grams), which we replicated.
T2 [1]: In their paper,Wulczyn et al. [28] mention that futurework
should involve the use of deep neural networks (DNNs), which
have proven useful in a number of text classification tasks [10].
Currently, the dominant approaches to text classification use re-
current neural networks (RNNs), and in particular long short-term
memory (LSTM) networks. �ese are applied for hate speech clas-
sification by Badjatiya et al. [1], who use them both alone and with
3�e phrases were collected from h�ps://www.hatebase.org/
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gradient-boosting decision trees (GBDTs). For the la�er, they first
train the LSTMon the training data, and then use the average of the
word embeddings learned by the LSTM as the input for the GBDT.
�ey report a major increase in performance when compared with
only using LSTMs. However, we were unable to replicate these
results with the code they provide,4 and received a be�er score us-
ing only the LSTM. �erefore, we use the LSTM alone instead of
LSTM+GBDT. Like Badjatiya et al., we initialize the word embed-
ding layer randomly.

As data, Badjatiya et al. use a corpus of 16000 tweets originally
collected by Waseem et al. [27]. �ese contain three possible la-
bels: “racism”, “sexism”, and “neither”. In our experiments, we
combined the “racism” and “sexism” classes into one, comprising
general hateful material. We denote this dataset as T2.
T1*, T3 [29]: In addition to LSTMs, convolutional neural networks
(CNNs) have been popular in text classification research. Badjatiya
et al. [1] experiment with them, as do Zhang et al. [29]. �e la�er
add CNNs and RNNs together, by giving the output of a CNN to
a gated recurrend unit (GRU) network. Word embeddings were
initialized with Google word vectors trained on news data.5

Zhang et al. [29] use dataset T1 from Davidson et al. [7], but
combine offensive and ordinary speech into one category, as op-
posed to genuine hate speech. We denote this dataset as T1*. Zhang
et al. further created their own small dataset of hate speech tar-
geted toward refugees and muslims, which we denote as T3. Fi-
nally, in addition to T1* and T3, they experimented with T2. We
replicate all three experiments, resulting in three distinct CNN+GRU
models.

2.2 Model performance
In this section, we present replications of the original models (Sec-
tion 2.2.1), and cross-apply all two-class models to all two-class
datasets (Section 2.2.2).

2.2.1 Replication and re-training. In the original papers, the hy-
perparameters of each model have been optimized to the particular
training sets used. However, we additionally trained each model
with every dataset, and compared the results. As reported in Ta-
ble 4, all models perform comparably on all four datasets.

Model Dataset
W T1* T2 T3

LR char 0.86 0.63 0.82 0.85
MLP char 0.86 0.63 0.81 0.85
CNN+GRU 0.87 0.70 0.83 0.81

LSTM 0.85 0.64 0.78 0.79
Table 4: F1-scores (macro-averagedacross classes) of the two-
class models trained and evaluated on each dataset (datasets
used in original papers in bold).

�e results indicate that themodels are roughly equally effective
when applied to different texts, provided that they were trained
using the same kind of text.
4h�ps://github.com/pinkeshbadjatiya/twi�er-hatespeech
5h�ps://github.com/mmihaltz/word2vec-GoogleNews-vectors

Inferior performance on T1* by all models can be explained by
two factors. First, the dataset is highly imbalanced, with the “hate”
class taking up only 5% of the training set. Second, this dataset
is derived from Davidson et al.’s original three-class corpus that
separates offensive speech from hate speech. To constrain classi-
fication into only two categories, T1* assimilates the “offensive”
and “non-hate” classes into one. Of these, the offensive class dom-
inates, covering roughly 80% of the combined class in the training
set. It may have more overlap with hate speech than non-offensive
speech, making classification more challenging.

2.2.2 Cross-application between datasets. To estimate the adap-
tivity of models pre-trained with one dataset, we applied them to
all test sets. We first trained eachmodel with the training data used
in the original paper presenting it, and then applied the resulting
classifier to the test sets of all four datasets.

Model, training dataset Dataset
W T1* T2 T3

LR char, W (0.86) 0.37 0.50 0.24
MLP char, W (0.86) 0.38 0.50 0.25

CNN+GRU, T1* 0.11 (0.70) 0.48 0.51
CNN+GRU, T2 0.14 0.28 (0.83) 0.44
CNN+GRU, T3 0.13 0.48 0.50 (0.81)

LSTM, T2 0.23 0.33 (0.78) 0.47
Table 5: F1-scores (macro-averaged) of pre-trained two-class
models applied to different test sets, with the original test
set in parentheses.

As we can observe from the results reported in Table 5, none of
the pre-trained models transfer well to any other dataset. �ese
results indicate that linguistic hate speech indicators are not well
retained across different datasets. �is may be due to the lack of
words shared between datasets, or differences between the rele-
vant features of particular subcategories of hate speech.

2.3 Offensive speech vs. hate speech
An important distinction can be drawn between hate speech and
speech that uses offensive vocabulary without being hateful. �e
la�er is separated from hate speech in Davidson et al.’s dataset
T1 [7]. Especially given the lack of any precise definition of hate
speech in either legal or academic contexts, it is important to in-
vestigate the extent to which existing approaches are sensitive to
the hateful-offensive distinction.

A particular concern is the extent to which two-class models as-
sign offensive but non-hateful text to the “hate” class. �is can be
treated as a false positive, assuming the hateful-offensive distinc-
tion is appropriate. Of course, the assumption is not always clear:
for instance, Google Perspective6 offers to detect “toxic” comments;
but whether “toxicity” should include all offensive text remains a
subjective assesment.

To estimate the performance of themodels on offensive but non-
hateful text, we applied the “offensive” datapoints fromT1’s test set
to all two-class models, except CNN+GRU trained on T1*, which
6h�ps://www.perspectiveapi.com/
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is built from T1 and hence not independent of the task. As seen in
Table 6, CNN+GRU trained on T3 was the only model to succeed
in this task. All other models performed on a random or below-
random level.

Model, training dataset Assignment to non-hate
LR char, W [28] 0.40
MLP char, W [28] 0.36
CNN+GRU, T2 [29] 0.23
CNN+GRU, T3 [29] 0.89

LSTM, T2 [1] 0.36
Table 6: Performance of two-class models on offensive but
non-hateful speech.

Additional experimentation revealed that the seeming success
of CNN+GRU trained on T3was due to the prevalence of unknown
words in the “offensive” test set, mapped to the unknown token
(<unk>). �is token was associated with the non-hateful class
in the model, and on average over 40% of words per sentence in
this test set were mapped to it. Hence, the performance simply
reflected the model’s small vocabulary.

�e results are suggestive of the problematic and subjective na-
ture of what should be considered “hateful” in particular contexts.
As the labels have been manually gathered via crowd-sourcing,
there is no guarantee that labels from different people were consis-
tent. Within datasets, this problem has can be addressed to some
extent by majority voting, but there is no method of guarantee-
ing agreement between datasets. It seems that the labeling in the
two-class models represents offensiveness more than hatefulness
as such.

Manual experimentation suggests similar conclusions concern-
ing Google Perspective. Some examples of Perspective’s scores
on non-hateful sentences appended with a common English curse-
word (marked with “F” here, but in original form in the actual ex-
periment) are presented in Table 7.

Sentence→ Modified sentence Old → New score
You are great → You are F great 0.03 → 0.82
I love you → I F love you 0.02 → 0.77
I am so tired→ I am F tired 0.06 → 0.85
Oh damn! → Oh F! 0.64 → 0.96
Food is amazing → Food is F amazing 0.02 → 0.68

Table 7: Google Perspective “toxicity” scores on non-hateful
sentences with and without a curse word.

None of the examples in Table 7 are hateful, but the curse-laden
variants are all considered “toxic” with a high likelihood. Clearly
“toxicity”, as Perspective currently classifies it, is not assimilable to
hate speech in any substantive (or legal) sense.

2.4 Transfer learning
�e replicated models use both classical machine learning meth-
ods, andmore recent deep neural networks (DNNs). Recently, trans-
fer learning has been argued to improve performance text classifi-
cation [12]. �is approach to deep learning is based on fine-tuning
a pre-trained model for a particular task, instead of training the
entire model from scratch. A natural question to ask is whether
performance on our datasets could be improved by using transfer
learning.

We implemented a particular transfer learning method called
ULMFiT [12], based on the code the authors provide.7 �e model
uses a language-model pre-trained on a large dataset fromWikipedia
[17], fine-tunes it for a particular dataset, and then fine-tunes a
classifier on top of the language-model. We refer the reader to the
original paper for technical details [12].

Our preliminary results indicate that ULMFiT is unable to reach
the baselines from the replicated models. On the Twi�er datasets
T1–T3, ULMFiT results (0.62, 0.75, 0.80) remained below all respec-
tive baselines (0.66, 0.84, 0.86). However, more systematic evalua-
tion of transfer learning is needed in future research, and we are
currently working on this question.

2.5 Summary of replication and
cross-application

All four two-class models perform highly similarily when trained
on each of the four datasets. In particular, neither the features
used (characters vs. words) or model complexity influenced the
test score in any significant way. �is suggests that the features
learned by all models (including LSTM and GRU models) are simi-
lar to relatively simple n-grams, as opposed to involving more com-
plex relations between features.

3 ATTACKS
Adversary model �e goal of the adversary we consider in our
work is to fool a detection model into classifying hate speech input
as ordinary speech. We assume that the adversary has complete
control of the input and can modify it to evade detection while
retaining the semantic content of the original hate speech. We do
not assume that the adversary has whitebox access to the model
parameters. �e adversary model is relaxed in one a�ack, where
some knowledge of the training set is required.

Classifiers that rely on surface-level features can be a�acked
with malformed input, constituting evasion a�acks [15]. In this
section we describe six evasion a�acks against the seven classi-
fiers we replicated. All a�acks are based around altering input text
with easily implementable and automatic methods. We categorize
the a�acks into three types, and experiment with two alternatives
from each:

• Word changes
1. Inserting typos
2. Leetspeak [22]

• Word-boundary changes
1. Inserting whitespace
2. Removing whitespace

7h�ps://github.com/fastai/fastai
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• Word appending
1. Appending common words
2. Appending non-hateful words

We differentiate the a�ack types, because they target distinct (al-
beit sometimes overlapping) aspects of the classifier. Word changes
are done to change the identities of words. For word-level mod-
els, the new identities are likely to become “unknown” (i.e. non-
identified tokens denoted by <unk>), while retaining the readabil-
ity and semantic content of the original text to a maximal extent
from a human reader’s perspective. Word boundary changes, on
the other hand, not only alter word identities but also the sentence
structure from a superficial perspective. Finally, word appending
makes no alterations to the original text, but only adds unrelated
material to confuse classification.

�ere are theoretical reasons to believe certain a�acks to be
more effective against some classifiers than others. In particular, as
word tokenization plays no role in character-models, it is clear that
these are less susceptible to word-boundary changes than word-
models. Furthermore, character-models are expected to be more
resistant to word changes, as many character n-grams are still re-
tained a�er the transformations are applied. In contrast, all word-
based models are expected to be vulnerable to a�acks that alter
word identities (i.e. bothword changes andword-boundary changes).
Word appending a�acks, in contrast, have no a priori reason to
work be�er against character- than word-based models, or vice
versa.

We applied the a�acks to all seven classifiers, by transforming
the hate class samples from the respective test sets.

3.1 Word changes
Word change a�acks introducemisspellings or alternative spellings
into words. �ey may make words entirely unrecognizeable to
word-based models, and change the distribution of characters in
character-based classification.

In 2017, Hosseini et al. [11] showed that Google’s “toxicity”
indicator Perspective could be deceived by typos. However, Per-
spective has since been updated, and the examples the authors
provided no longer succeed to the extent they did then. We re-
view these results in Section 4.4. Still, we consider the proposal to
be worth further investigation with larger datasets and automatic
typo-generation.

In addition to typos, we also consider a simplified variety of leet-
speak, which is a type of Internet slang replacing characters with
numbers. Different variants may involve more alterations, but we
only consider character-to-number alterations here. Leetspeak has
been shown to be easily readable to humans [22], but will be unrec-
ognizable to word-models unless it is also present in the training
set.

3.1.1 Algorithms. Inserting typos: As an a�ack, typo gener-
ation has three desiderata: (i) reducing the detection likelihood
of hate speech, (ii) avoiding correction by automatic spell check-
ers, and (iii) retaining the readability and meaning of the original
text. If the second goal is not met, the defender can include a spell-
checker as a pre-processing stage in the classification. Satisfying
the third goal requires the word to remain recognizable, and not
to be mapped to some other word in the reader’s mental lexicon.

To make the a�ack succesful, word-level changes must not only
fool the classifier, but be human-readable and retain the original
interpretation to a maximal extent. �is means that we cannot
simply introduce typos via random changes to words. Instead, the
change must have minimal impact on readability. We utilize the
empirical finding from cognitive psychology that characters in the
middle of words have a smaller effect on readability than the first
and last characters [23]. To maximize understandability, we re-
stricted the alterations to a single switch between two characters.

�e algorithm switches the order of two characters in the word,
excluding the first and final character. �e probability of choos-
ing particular characters is calculated by two factors: characters
closer to the middle of the word are preferred, and characters that
are close to each other are preferred. First, a character is chosen be-
tween the second and second-to-last character of the word, based
on a Gaussian distribution centering in the middle. Hence, only
words with four of more characters are applicable. Next, a sec-
ond character is chosen based on the combined effect of the first
distribution and a second Gaussian distribution centered around
the previously chosen word. Two random non-edge characters
are consequently chosen, favoring characters in the middle of the
word. �ese characters are then switched to create the typo.
Leetspeak: To transform original text into simple leetspeak, we
introduce the following character replacements:

(a: 4) (e: 3) (l: 1) (o: 0) (s: 5).

�e changes retain readability well, given the visual similarity
between the original and leet characters [22].

3.1.2 Mitigation. We tried twomethods of improving classifier
performance on test data modified via word changes: adversarial
training, and adding a spell checker to test set pre-processing.
Adversarial training:Weaugmented the training setwith stochas-
tically transformed versions of the original training examples, for
all classes (doubling the training set size). �e purpose of adver-
sarial training was to add transformed varieties of each word into
the model’s vocabulary, making it more likely for the model to as-
sociate them with the correct class.

�e random nature of the typo-algorithm limits the scalability
of the approach with long words, as the range of possible typos
becomes larger. In contrast, given the deterministic nature of our
leetspeak algorithm, we can expect adversarial training to work
well against it.
Spell checking: We added a spell-checker to the pre-processing
stage of the test set to find out how resistant our typo-introduction
algorithmwas to automatic correction. We used Python’s Autocor-
rect library for this.

3.2 Word boundary changes
�e tokenization a�ack differs fromword transformation by retain-
ing word-internal characters, but introducing or removing charac-
ters that result in aword-basedmodel separating between different
tokens. We use space as the most evident choice.

3.2.1 Algorithms. We implemented two simple algorithms for
introducing or removing whitespace. We predict removal to be
more effective against word-based models on theoretical grounds.
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Character-based models are likely not highly susceptible to either
variant.
Insertingwhitespace: Word-basedmodels rely on tokenizing the
text into a sequence of words, based on characters treated as word-
separators. �erefore, a simple way to makewords unrecognizable
is to change the tokenization by introducing additional separators
between words. �e effect of this a�ack on readability is small, but
it results in most words becoming unrecognized by the classifier.

We used a simple approach of spli�ing each (content-)word into
two by randomly selecting a character from the word and adding
a space before it. In a word-based model a previously recognized
word will turn into <unk> <unk>.
Removing whitespace: Conversely, removing all spaces leaves
a single <unk> datapoint. Word-based models’ performance will
then depend entirely on how this single token is classified. Character-
models, in contrast, will only lose the information related to the
space token, which might deteriorate their performance, but likely
not much.

�is a�ack has a marked negative impact on surface-level read-
ability, but still allows the reader to recover the original content.
We take the adversary’s main goal to be ge�ing his/her message
across to their target, even if this required some effort on other end.
As English sentences are rarely reformulable into other grammati-
cal sentences only by changing whitespace distribution, ambiguity
does not arise and information loss is marginal.

3.2.2 Mitigation. Adversarial training: For the whitespace
insertion a�ack, we appended the training set with randomly split
versions of the original data to include word-parts into the model’s
vocabulary (thus doubling the training set). Given that an n char-
acter word can be split in two inn−1 possible ways, going through
all possible combinations of splits in a sentence quickly results in
a combinatory explosion. Hence, the effect of adversarial training
is expected to be limited on analytic grounds.

For completeness, we also conducted adversarial training via
space removal, although this is close to useless on the grounds that
it only adds whole comments as single words to the model vocabu-
lary, and associates them with one class. As this method can only
have an effect if it encounters the exact comment again, it cannot
scale and hence its relevance is close to none inword-basedmodels.
Character-models, in contrast, can make use of it, but its inclusion
is mostly redundant, as the datapoints are not changed much in
comparison to the originals.
Removing spaces Another mitigation method is available only
for character-based models, where spaces are removed from both
training and test data at the pre-processing stage. �is method
will by necessity remove any effect of adding spaces, but will also
remove potentially relevant information from the data, as one com-
mon character is removed entirely. �e effectiveness of this mitiga-
tion method thus depends on the relevance of the space character
for the classification.

3.3 Word appending
All text classification is based on the prevalence of class-indicating
properties in the data. �erefore, adding material that is indicative
of one class oven another makes it more likely for the classifier

to assign the sample to that class. In many tasks this is appro-
priate, but hate speech detection constitutes an important excep-
tion. Hate speech and non-hate speech are not reversible: adding
hateful material to ordinary speech will turn the text into hate
speech, whereas adding non-hateful material to hate speech may
not change its status. �is vulnerability invites a possible a�ack,
where non-hateful material is inserted to hate speech to change
the classification.

For our a�ack model, we assume that the adversary is aware of
the use of additional unrelated words to distract automatic classi-
fiers. Assuming also that the beginning of the additional material
is clear enough from the discourse, readability and semantic retain-
ment are secured.

3.3.1 Algorithms. We generated a randomnumber (between 10
and 50) orwords at the end of each text in the “hate” class of the test
set. �e words were randomly chosen from two possible sources,
yielding two varieties of the a�ack.
Appending common English words: Google has provided a list
containing the most common words appearing in a large book cor-
pus [18]. We used random words from the top 1000 of these words,
excluding stopwords. �e rationale behind this a�ack is that it re-
quires no knowledge of the training data on the part of the a�acker.
Further, the common English words are likely to be contained in
the training corpus of many different datasets.
Appending common ”non-hate” words: Here, we assume the
a�acker knows, or correctly guesses, a list of words in the training
data’s non-hateful class. He then appends the text with randomly
chosen common (content) words from this class. We are still not
assuming white-box access to the model itself.

4 RESULTS
We performed our six a�acks on each of the seven model-dataset
combinations replicated from prior work. �is yields 42 a�acks in
total. We used adversarial training to mitigate all a�acks, and tried
additional defence methods for the typo a�ack (spell-checking)
and tokenization a�acks (space removal in training; this method
is only available for character-models).

A�ack effectiveness varied betweeen models and datasets, but
the performance of all seven hate speech classifiers was signifi-
cantly decreased by most a�acks. Word-based models were most
affected by tokenization changes, and character-based models by
word appending. A significant difference betweenword- and character-
based models was that the former were all completely broken by
at least one a�ack, whereas the la�er were never completely bro-
ken. �e two character-models performed comparably across all
a�acks.

�e training dataset had a major influence on a�ack resilience,
as demonstrated by the differences between the CNN+GRU model
trained with T2 and T3, respectively. However, CNN+GRU trained
on T2 was more resilient to all a�acks than LSTM trained on T2,
indicating that model choice also had an effect.

�e results from all a�acks and their mitigation are presented
in Table 8. Since our a�acks affect datapoints in the “hate” class,
we only report the F1-scores from this class.
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Model, DS Orig.
Word changes Boundary changes Word appending

Typos Leet Insert Remove Common Non-hate
A AT SC A AT A AT RW A AT RW A AT A AT

LR char, W 0.75 0.60 0.71 0.68 0.61 0.74 0.75 0.71 0.74 0.54 0.75 0.74 0.48 0.68 0.47 0.67
MLP char, W 0.75 0.55 0.71 0.68 0.59 0.73 0.75 0.71 0.72 0.56 0.76 0.72 0.50 0.72 0.48 0.67
CNN+GRU, T1* 0.43 0.31 0.35 0.36 0.00 0.33 0.04 0.34 − 0.00 0.00 − 0.04 0.38 0.01 0.27
CNN+GRU, T2 0.76 0.27 0.67 0.68 0.09 0.77 0.43 0.66 − 0.00 0.00 − 0.64 0.75 0.50 0.74
CNN+GRU, T3 0.69 0.23 0.61 0.43 0.03 0.76 0.08 0.63 − 0.00 0.00 − 0.18 0.70 0.14 0.64
LSTM, T2 0.70 0.40 0.66 0.67 0.19 0.71 0.42 0.64 − 0.00 0.02 − 0.27 0.68 0.15 0.69
LR word, T1 0.50 0.30 0.42 0.37 0.04 0.48 0.18 0.44 − 0.01 0.02 − 0.48 0.44 0.45 0.30

Table 8: F1-scores on the “hate” class from attacks and mitigation.
Attack: A; Mitigations: AT = adversarial training, SC = spell-checker, RW = removing whitespace (character-models only)
Expected pattern is attack reducing score and mitigation restoring it; deviations highlighted and discussed in sections 4.1–4.3.

4.1 Word changes
Word-modelsweremore susceptible to leetspeak than typos, whereas
no clear difference can be found in character-models. In addition,
word-modelsweremuchmore vulnerable to both a�acks than character-
models. Adversarial training had a major positive effect on perfor-
mance against both a�acks, but its effect was larger on the leets-
peak a�ack. �is is unsurprising given the deterministic nature of
the leetspeak algorithm. �e determinacy also indicates that the
leetspeak a�ack could easily be mitigated by a counter-algorithm
transforming numbers into corresponding characters.

4.2 Word boundary changes
Neither character-model was affected by the whitespace insertion
a�ack, but the performance of both was markedly decreased by
whitespace removal. We suggest this may be due to the fact that
whitespace is involved in the beginnings and ends ofwords. Unlike
adding whitespace, removing it abolishes all n-grams concerning
word boundaries, which may be especially relevant for classifica-
tion.

All word-models were completely broken by white space re-
moval, and severely hindered by whitespace addition. As expected,
adversarial training had no impact on whitespace removal. Re-
sistance to whitespace addition, in contrast, was improved, and
reached levels close to the baseline, differing from it only 6 − 10%.
Overall, removing whitespace was muchmore effective than its ad-
dition for all models, both as an a�ack and in avoiding adversarial
training as mitigation.

Character-models peformed slightly worse when trained with-
out spaces, but not much, the largest drop in F1-score being 3%.
We conclude that removing spaces in pre-processing during both
training and testing makes character-based models resistant to to-
kenization a�acks with only aminor reduction in predictive power.
No comparablemitigation exists forword-models, where word bound-
ary removal will force the text to be tokenized as a single <unk>.

4.3 Word appending
Unlike other a�acks, word appending affected character- andword-
models comparably. Words from the non-hate class of the training
set had a systematically larger impact than commonEnglish words,
but the difference was very minor (1 − 2%) on character-models.

�e largest difference was observed on the LSTM model, where
non-hate words had almost twice the effect of commonwords (0.27
vs. 0.15).

�e only model not affected by either appending a�ack was the
three-class word-based LR model from Davidson et al. [7], trained
on T1. We a�ribute this result to the fact that the major non-hate
class of this dataset was the “offensive” class. Common English
words or words from the “neither” class rarely indicate offensive
speech, making it unlikely for the hate speech to be classified as
such. �is data imbalance also likely explains the negative effect of
adversarial training, which was not observed on any other model.

Adversarial training worked very well on all two-class models,
reaching predictive power close to the baseline. �e effect was the
smallest with CNN+GRU trained on T1*, leaving 16% behind the
baseline with adversarial training. �e dataset T1* is drawn from
T1 by combining offensive and non-offensive ordinary speech into
a single class. As offensive speech takes the overwhelming major-
ity of T1, T1* is highly imbalanced. We therefore expect adversar-
ial training to result in the appended words to associate with the
“non-hate” class more readily than the “hate” class, which would
account for its limited success in mitigation.

4.4 Adding “love”
Finally, we present the results from our a�ack combining the two
most powerful approaches we experimented with: whitespace re-
moval and word appending.

Whitespace removal turns the sentence into a single <¡unk¿>,
making the classification entirely dependent on themodel’s predic-
tion of this particular token. Models might behave differently with
respect to it, and hence the effects of whitespace removal can be un-
certain. �is problem can be remedied by adding words strongly
indicative of the non-hate class, effectively forcing the model to
prefer it.

Furthermore, instead of using a long list of non-hateful words,
we minimize the hindrance on readability by appending the text
with only one word: “love”. We choose this word because, intu-
itively, it is likely to negatively correlate with hate speech. Our
results support this hypothesis.

As expected, the a�ack completely broke all word-models, and
significantly hindered character-models (Table 9). Based on the
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Model (data, classes) Original “Love”
LR char (W, 2) 0.75 0.52
MLP char (W, 2) 0.75 0.55
CNN+GRU (T1*, 2) 0.36 0.01
CNN+GRU (T2, 2) 0.79 0.00
CNN+GRU (T3, 2) 0.78 0.00
LSTM (T2, 2) 0.74 0.00
LR word (T1, 3) 0.50 0.00

Table 9: F1-scores (macro) from the attack of removingword
boundaries and adding “love”.

word appending results, the performance on character-modelswould
decrease with more appended non-hateful words. Since the origi-
nal message can relatively easily be recovered, and the single un-
related word has a minimal effect on readability (assuming it to
be separable from the rest by the reader), we consider this a�ack
highly successful against state-of-the-art hate speech classification.

We additionally experimented with Google Perspective, using
example sentences from Hosseini et al. [11], reproduced below.

S1: Climate change is happening and it’s not changing in our
favor. If you think differently you’re an idiot.

S2: �ey’re stupid, it’s ge�ing warmer, we should enjoy it
while it lasts

S3: �ey are liberal idiots who are uneducated
S4: idiots. backward thinking people. nationalists. not accept-

ing facts. susceptible to lies.
S5: �ey are stupid and ignorant with no class
S6: It’s stupid and wrong
S7: If they voted for Hilary they are idiots
S8: Anyone who voted for Trump is a moron
S9: Screw you trump supporters
Hosseini et al. provide examples of introducing manual typos,

punctuation and spaces in each sentence, and demonstrate its ef-
fects on Google Perspective. We applied the same modifications
to the same example sentences, but received much higher toxicity
scores. �is indicates that Perspective has been updated, and now
performs be�er on adversarial data. Nevertheless, we managed to
reduce the toxicity score to below 0.40 on all example sentences
with our a�ack of removing word boundaries and adding “love”
(Table 10). �is number is Perspective’s upper limit for the label
“unlikely to be considered toxic”.

5 DISCUSSION
We evaluated the performance of seven state-of-the art hate speech
classifiers presented in prior work. We showed that these tech-
niques work roughly equally with different datasets, provided that
the training and testing are based on the same dataset. However,
we identified three main deficiencies in the models: (i) lack of ef-
fective transferability across datasets, (ii) conflation of hate speech
and offensive ordinary speech, and (iii) susceptibility to simple text
modification a�acks. �e first two arise from the problematicity of
the concept of “hate speech”, which can differ across datasets, and
may or may not include all offensive or inappropriate material de-
pending on the context.

Sentence Original Modified
[11] “Love”

S1 0.95 0.94 (0.20) 0.35
S2 0.92 0.38 (0.02) 0.37
S3 0.98 0.79 (0.15) 0.37
S4 0.95 0.90 (0.17) 0.37
S5 0.97 0.53 (0.11) 0.37
S6 0.88 0.82 (0.17) 0.35
S7 0.99 0.70 (0.12) 0.15
S8 0.96 0.64 (0.13) 0.35
S9 0.90 0.78 (0.17) 0.35

Table 10: Google Perspective “toxicity” scores for S1–S9.
Scores from manual modifications [11] in third column; re-
sults reported in the original paper in parentheses.

Our a�acksweremuchmore effective against word-models than
character-models. Most effective was the very simple “love” a�ack,
which managed to completely break all word-models, and severely
hinder the performance of character-models. We further demon-
strated the a�ack’s ability to reduce Google Perspective’s toxicity
score to below the threshold of 0.40 in all our example sentences.

In this section we present some consequences for future work
that, we suggest, are implied by our findings.

5.1 Transferability and false positives
No two-class model performed well on other datasets, and all of
them classify most offensive ordinary speech as hateful. Manual
experimentation showed that Google Perspective functions simi-
larily, as adding curse words to otherwise benign text drastically
increases the toxicity score. �ese results are indicative of two re-
lated problems.

First, the standards of ground-truth labeling likely varied across
different datasets. For example, catagories like “sexism/racism”
(T2) might be appropriate for some comments which are not “per-
sonal a�acks” (W), or vice versa. �is problem may not be fatal to
institutions that wish to target particular subtypes of hate speech,
as long as appropriate labels are available for sufficient training
data. Our cross-application results further indicate that, for classi-
fication performance, model type ma�ers less than dataset. How-
ever, the problem is more serious for the task of more general hate
speech detection, as undertaken in law enforcement or academic
research.

Second, with the exception of Davidson et al. [7], the distinction
between hate speech and more generally “inappropriate” material
is typically not made clear. Google Perspective does not distin-
guish between hate speech and offensive speech, characterizing
their “toxicity” metric as the means to identify a “rude, disrespect-
ful or unreasonable comment that is likely to make you leave a
discussion”.8 Hence, the problem is not only that offensive ordi-
nary speech can constitute a false positive. Rather, it is not clear
where the boundary between true and false positives should lie.

We can, however, assume that a datapoint constitutes a genuine
false positive at leastwhen the only reason it is allocated to the hate
8h�ps://www.perspectiveapi.com
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class is because it contains curse words not used to offend any par-
ticular person or group. For future work, we therefore recommend
experimenting with methods that discard curse words at least on
the unigram level.

5.2 Evasion attacks
Our results show that character-models are much more resistant
to simple text-transformation a�acks against hate speech classifi-
cation. While this is not theoretically surprising, to our knowledge
it has not been taken into account in prior work on the topic. In
particular, space-removal during training has only a minor nega-
tive effect on performance, mitigates all tokenization a�acks, and
is only available for character-models. Further, while we received
the best results overall on CNN+GRU, the simple character-models
fared reasonably well in comparison toword-based DNNs. We con-
clude that using character-models instead of word-models is the
most effective protection against our a�acks.

Nevertheless, all models were susceptible to the word append-
ing a�ack. �is was expected, since the other a�acks are built
around the transformation of word identities, but the appending
a�ack has a different basis. It takes advantage of a fundamental
vulnerability of all classification systems: they make their decision
based on prevalence instead of presence. �e status of some text as
hateful is a ma�er of it containing some hateful material; whether
this material constitutes the majority of the text is irrelevant. Clas-
sification, in contrast, looks at the entire sentence and makes its
decision based on which class is more represented on average. In
principle, any text classification system can be forced to make a
particular prediction by simply adding enough material indicative
of one class.

We can re-phrase the problem by referring to the distinction be-
tween classification and detection, where the la�er consist in find-
ing some features of a relevant sort, regardless of the prevalence
of other material in the datapoint. In particular, we suggest re-
conceptualizing hate speech detection as anomaly detection, where
hate speech constitutes an anomalous variant of ordinary speech.

As our a�acks target commonly used model architectures in
text classification, they are generalizable beyond the task of hate
speech detection. Possible other a�ack scenarios involve e.g. fool-
ing sentiment analysis, author anonymization [2, 3], or avoiding
content-based text classification to escape censorship.

On the other hand, our a�acks only concern textual content, and
hence do not hinder hate speech detection methods based around
meta-features concerning user behavior [24]. Given both the sim-
plicity and effectiveness of our a�acks, focusing on meta-level ap-
proaches instead of text classification can be a useful direction for
future research.

6 ETHICAL CONSIDERATIONS
For our replication and cross-application, we only used freely avail-
able online datasets and models. We collected no data ourselves,
and none of our tests involved human subjects. Since our origi-
nal code constitutes a series of a�acks, we do not provide it open
source. However, wewillmake it available for bonafide researchers
to facilitate reproducibility.

7 RELATED WORK
In their survey on hate speech detection, Schmidt and Wiegand
[24] categorize the features used in prior research into eight cate-
gories:

(i) simple surface features
(ii) word generalization
(iii) sentiment analysis
(iv) lexical resources
(v) linguistic features
(vi) knowledge-based features
(vii) meta-information
(viii) multimodal information
Focusing only on linguistic features, we disregard (vii)–(viii).
Of simple surface features, character n-grams have been argued

to perform be�er than word n-grams, since they can detect simi-
larities between different spelling variants [16]. �ese results are
in line with ours. Word generalization has traditionally involved
word clustering, i.e. assimilating similar words [26], and more re-
cently word embeddings. However, the superiority of embeddings
over n-grams is not empirically a�ested, as both character and
word n-grams have performed be�er when compared with embed-
dings in hate speech classification [20].

DNNs typically include a word embedding layer in the begin-
ning of the network, which is also true of the models we experi-
mented with (LSTM, CNN+GRU). Prior to training, the embedding
layer can be initialized randomly, or initialized by pre-trained em-
beddings like word2vec [19] or GloVe [21] Of the models we used,
the LSTM [1] embeddings were randomly initialized, whereas the
CNN+GRU [29] embeddings were initialized with Google embed-
dings trained on a news corpus.9

Sentiment analysis can be incorporated to the process either as
a prior filter [9], or as a feature used directly for hate speech clas-
sification. Of the models we experimented with, the three-class
LR-model of Davidson et al. [7] includes sentiment as a textual
feature. One important domain of future work involves applying
our a�acks on state-of-the-art sentiment classifiers to see if they
can be broken to the same extent with simple text transformation
methods.

�e remaining (linguistic) feature-types (iv)–(vi) consist ofmore
traditional, o�en hand-cra�ed, features and rules. Lists of hateful
words are available online,10 and can be appended to other features
in aid of hate speech detection. As stand-alone features, their per-
formance is weak in comparison to n-grams [20, 24]. Of linguistic
features applied to hate speech classification, the most common
have been part-of-speech tags and dependency relations [5, 6, 20].
Knowledge-based approaches based on automatic reasoning can
help in detecting particular pa�erns related to hate speech [8], but
do not scale beyond those pa�erns.

A general trend within NLP in recent years has been a shi� to-
ward using DNNs as opposed to more traditional keyword- and
rule-based methods, or traditional machine learning approaches
building on simple sparse features like n-grams [10]. However,
our a�ack results indicate that reconsidering some older methods

9h�ps://github.com/mmihaltz/word2vec-GoogleNews-vectors
10�e most extensive of such lists are currently found in h�ps://www.hatebase.org/.

9



could be useful, as they may be more resistant toward the word ap-
pending a�ack. In particular, keyword-based approaches are not
vulnerable to the class asymmetry problem, as the mere presence
of hate-indicative keywords is relevant, irrespective of the pres-
ence of other words.

Outside of hate speech detection, text obfuscation -based eva-
sion a�acks have been conducted to avoid spam detection, espe-
cially Bayesian models [25]. In particular, our word appending at-
tack bears a close similarity to what have been called “good word
a�acks” on spam filters [14, 30]. Here, the spammer injects words
that are treated as indicative of legitimate text by the filter, with
the goal of flipping themodel’s class prediction. Despite these well-
known a�acks on spam detection, analogical cases for hate speech
have so far been neglected in the literature. We hope to alleviate
this problem.

8 CONCLUSIONS AND FUTURE WORK
Our replication and cross-application results suggest that model
architecture has no major impact on classifier performance. Ad-
ditionally, the simplest model (LR-char) performed comparably to
more complex models, indicating that the positive effect of using
more complex architectures is only minor. Cross-application fur-
ther demonstrated that model complexity did not help to improve
scalability across datasets. Instead, the problem stems from the
labels themselves, the grounds of which can differ between the
datasets.

We therefore suggest that futurework should focus on the datasets
instead of themodels. More work is needed to compare the linguis-
tic features indicative of different kinds of hate speech (racism, sex-
ism, personal a�acks etc.), and the differences between hateful and
merely offensive speech.

�e effectiveness of our simple a�acks is indicative of the vul-
nerability of proposed hate speech classifiers based on state-of-the-
art machine learning approaches. Future work should take such at-
tacks into consideration in addition to mere classification accuracy.
In particular, we demonstrated the superiority of character-models
against a�acks, which provides a significant case in favor of using
them in real-world applications.

�e appending a�ack presents a fundamental problemwith treat-
ing hate speech detection as classification. �e classes are asym-
metrical in that ordinary speech can be transformed into hate speech
by adding hateful material, but hate speech should not be trans-
formed into ordinary speech by adding benign material. �is asym-
metricity is not built into classification, but it should be a founda-
tional principle of hate speech detection. We recommend focusing
on this problem in future research, and seeking detection methods
that are not based on mere classification. One possibility is to rein-
troduce more traditional keyword-based approaches, where only
hate-indicative words are sought, disregarding the presence or ab-
sence of other words.

Additionally, building on our adversarial training experiments,
we suggest training data augmentation as a method to help classi-
fication remain more resistant against appending a�acks. �is is a
well-known approach to making classifiers more resistant to noise.
Adding benign text to hate speech datapoints helps the classifier
find those aspects that are relevant for the text belonging to the

hate class, and decreases the effect of irrelevant word-class corre-
lations.

In summary, we make four recommendations for future work
on hate speech detection:

• Focus should be on the datasets instead of the models, and
more qualitative work is needed to understand different
categories the fall under the umbrella of “hate speech”.

• Simple character-models are preferable toword-basedmod-
els (including DNNs) with respect to resisting simple eva-
sion methods based on text transformation.

• Detection methods should not be vulnerable to the asym-
metricity between the classes, which invites using meth-
ods that only target the presence of hate-indicative fea-
tures and remain indifferent to other features.

• Training data augmentation can reduce the effect of be-
nign words on classification.
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Appendix B

Media Coverage

The paper has a good media coverage, such as Wired (https://www.
wired.com/story/break-hate-speech-algorithm-try-love/), or Repubblica
(https://www.repubblica.it/tecnologia/social-network/2018/09/12/news/
odio_online_che_disastro_i_filtri_automatici_basta_una_lettera_per_
ingannarli-206266171/).

FIGURE B.1: Wired - 26.9.18

The updated and full list is available in https://ssg.aalto.fi/research/
projects/deception-detection-via-text-analysis/results/.

https://www.wired.com/story/break-hate-speech-algorithm-try-love/
https://www.wired.com/story/break-hate-speech-algorithm-try-love/
https://www.repubblica.it/tecnologia/social-network/2018/09/12/news/odio_online_che_disastro_i_filtri_automatici_basta_una_lettera_per_ingannarli-206266171/
https://www.repubblica.it/tecnologia/social-network/2018/09/12/news/odio_online_che_disastro_i_filtri_automatici_basta_una_lettera_per_ingannarli-206266171/
https://www.repubblica.it/tecnologia/social-network/2018/09/12/news/odio_online_che_disastro_i_filtri_automatici_basta_una_lettera_per_ingannarli-206266171/
https://ssg.aalto.fi/research/projects/deception-detection-via-text-analysis/results/
https://ssg.aalto.fi/research/projects/deception-detection-via-text-analysis/results/
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FIGURE B.2: Repubblica - 12.9.18
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