Aalto University

PRADA: Protecting against
DNN model stealing attacks



Background

Machine learning increasingly popular: business advantage to companies

» API: black-box access to clients
« Automate tedious decision-making

Attacker wants to compromise
 Model confidentiality ~ model extraction

Victim
model

Prediction
Service
Provider

API

 Model integrity (prediction quality) ~ transferable adversarial examples

[1] Tramer et al. Stealing ML models via prediction APIs. UsenixSEC’16.
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How to measure extraction success?

Does attacker’s surrogate model produce similar predictions as victim model?



How to measure extraction success?

Does attacker’s surrogate model produce similar predictions as victim model?

-1 1
Random Uniform Agreement [1] Test Agreement [1]

[1] Tramer et al. Stealing ML models via prediction APIs. UsenixSEC’16.



Transferable adversarial examples

Do adversarial examples created with surrogate model transfer to victim model?

1 - 1
Non-targeted transferability [2] Targeted transferability

. Target class: any other Target class: specified other
[2] Papernot et al. Practical black-box attacks against machine learning. AsiaCCS’17.



DNN model extraction framework

Algorithm 1 Model extraction process with the goal of
extracting classifier F, given initial unlabeled seed samples
X and a substitute model F’ (initially random).

procedure EXTRACTMODEL(F)
WU« Initial data collection
L <+ {U, LABEL(U, F)}

|F' « Select architecture |
IH — Resolve hvperparamerer.fl > cf. Sec. [III-A

F' < INITIALIZE(F") > Set random weights
F'+ TRAIN(F' | L, H)
for i < 1,p do > p duplication rounds

\U < Create synthetic samples| © cf. Sec.[II-C
L+ { LU{U, LABEL(U, F)} }
F' «+ TRAIN(F'" | L, H)
end for
return F’
end procedure

[1] Tramer et al. Stealing ML models via prediction APIs. UsenixSEC’16.
[2] Papernot et al. Practical black-box attacks against machine learning. AsiaCCS’17.



Hyper-parameter determination

- Algorithm 1 Model extraction process with the goal of
1. Hand pICked [2] extracting classifier F', given initial unlabeled seed samples
 Need re-adjustments for new datasets X and a substitute model F’ (initially random).

5. procedure EXTRACTMODEL(F)

6: U + Initial data collection

7: L + {U, LABEL(U, F')}

8: F'" « Select architecture

9: H < Resolve hyperparameters > cf. Sec. (ITI-A
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Best learning rate: 0.0800385
: : C g : ) Best number of epochs: 147
[1] Tramer et al. Stealing ML models via prediction APIs. UsenixSEC’16.  jytsina Sty si .

[2] Papernot et al. Practical black-box attacks against machine learning. A




Synthetic samples

Algorithm 1 Model extraction process with the goal of

Duplication round 6 extracting classifier F', given initial unlabeled seed samples
3 seed + 189 synthetic samples X and a substitute model F’ (initially random).

7 return F’
8: end procedure

5. procedure EXTRACTMODEL(F)

6: U « Initial data collection

7: L + {U, LABEL(U, F)}

8 F' <« Select architecture

9: H < Resolve hyperparameters > cf. Sec. |III-A
10: F'" < INITIALIZE(F") > Set random weights
11: F'+ TRAIN(F' | L, H)

12: for 1 + 1.p do > p duplication rounds
13: \U + Create synthetic samples| © cf. Sec.[lII-C
14 L+ { LU{U, LABEL(U, F)} }

15: F' < TRAIN(F' | L, H)

16: end for

1

1




Approaches for DNN model stealing

Tramer

Seeds: very many random points

Line search + query plausible boundary
Purpose: RU-Agreement, Test-Agreement
Hyperparameters: Same

~100,000 queries

- | Both:

~ 11

[1] Tramer et al. Stealing ML models via prediction APIs. UsenixSEC’16.

From few or no natural samples to -
- || thousands of synthetic samples TR
_|| Initial random model =2 refined model |

Papernot

Seeds: few natural samples (~10 per class)
Iteratively: train substitute + query adv. ex.
Purpose: Non-targeted transferability
Hyperparameters: hand-picked

Training: 10 epochs (very short!)

~6,400 queries

[2] Papernot et al. Practical black-box attacks against machine learning. AsiaCCS'17.



Datasets

MNIST: B&W Digits GTSRB: Traffic Sign Recognition

10 classes 43 classes

Victim DNN: trained with 55,000 images Victim DNN: trained with 39,000 images
4 layers (2 conv + 2 dense) 5 layers (2 conv + 3 dense)

~500,000 parameters ~700,000 parameters




Preliminary attack on MNIST

Comparative evaluation:

 Initially: up to 100 natural samples

» Stops after 102,400 gueries sent

« All four success criteria evaluated

o Transferability: FGSM € = 25%, as in [2]

RU Agreement Test Agreement
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[1] Tramer et al. Stealing ML models via prediction APIs. UsenixSEC’16.

Tramer [1] ineffective on DNNs
* Networks here 250 x bigger than in [1]
Papernot[2] better. \Why short training?
No benefit from short training.
Papernot with CV-Search superior
 Why not done before?

Non-targeted transf. Targeted transf.

0.8 0.4
= Tramer == Tramer
06 Papernot R4 03 — Papernot /
Same / Same
=« CV-search =« CV-search /
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[2] Papernot et al. Practical black-box attacks against machine learning. AsiaCCS’17.



Comparative evaluation with state-of-the-art

MNIST Tramer [1] |Papernot [2] Ours Improvement
Test < 7% 95.1% 97.9% 1.03 X
Agreement

Targeted 1% 10.6% 39.3% 3.70 X
Transferability

GTSRB Tramer [1] |Papernot [2] Ours Improvement
Test < 1% 16.9% 62.5% 3.70 X
Agreement

Targeted 2% 41.1% 84.4% 2.05 X%
Transferability

Top-5 agreement: 47%

[1] Tramer et al. Stealing ML models via prediction APIs. UsenixSEC’16.

[2] Papernot et al. Practical black-box attacks against machine learning. AsiaCCS’17.

Top-5 agreement: 92%
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What makes our attacks better?

MNIST GTSRB
Agree. Targeted Agree. Targeted
Baseline: 95.1% 10.6 16.9% 41.1%
Papernot
Our 97.9% 39.3% 62.5% 84.4%
attacks

5: procedure EXTRACTMODEL(F)

6:

=

8:

9:
10:
11:
12:
13:
14:
15:
16:
17:

U « Initial data collection
L + {U, LABEL(U, F')}
F' « Select architecture

H < Resolve hyperparameters

> cf. Sec. |III-A| I

F" « INITIALIZE( F")
F'«+ TRAIN(F' | L, H)
for 1 +— 1.p do

> Set random weights

> p duplication rounds

U < Create synthetic samples

> cf. Sec. |III-C| I

L+ { LU{U, LABEL(U.F)} }
F'" «+ TRAIN(F' | L. H)

end for

return F’

18: end procedure

More in paper!
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All attacks: Common characteristics

Specific pattern in attacks:

1. Natural/random samples

e [Establish initial decision boundaries

2. Synthetic samples ~ similar to existing samples
* Refine the boundaries

Study distribution of queries to detect model extraction attacks

14



Intuition for a defense

Preliminary: distance between random points in a space fits a normal (Gaussian) distribution

Assumptions

« Benign queries consistently distributed — distances fit a normal distribution
« Adversarial queries focused on a few areas — distances deviate from a normal distribution

Benign Attack Benign Attack
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Proposed defense

Stateful defense

Focus on low false positives
Keeps track of queries submitted by a given client
Detects deviation from a normal distribution

Shapiro-Wilk test

Quantify how well a set of samples D fits a normal distribution
Test statistic: W(D) < § — attack detected
&. parameter to be defined

16



Benign data

Simulate legitimate queries

 Random same distribution (MNIST/German)

« Random different distribution (USPS/Belgian)

« Uniformly random images

 Sequence of images (207x30 images German)

MNIST German

USPS Belgian




Detection efficiency

Model + 6 value

FPR

Queries made until detection

Tramer  Papernot T-rnd
MNIST (6 = 0.96) 0.0% 5,560 120 130
MNIST (6 = 0.95) 0.0% 5,560 120 140
GTRSB (0 = 0.90) 0.6% 5,020 430 500
GTRSB (0 = 0.87) 0.0% 5,020 430 540

« All prior model extraction attacks detected

« Detection triggered when synthetic samples queried

e Slowest on Tramer ~ ineffective on DNNSs

Requires > 500k queries to succeed [1]

[1] (Optimistic estimate based on) Tramer et al. Stealing ML models via prediction APIs. UsenixSEC’16.
[2] Papernot et al. Practical black-box attacks against machine learning. AsiaCCS’17.
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Summary

Attack with 10 natural samples per class + 100 000 synthetic queries
o Strong attacks on MNIST (98% agreement) and GTSRB (92% top-5 agreement)

Takeaways:
 Hyperparameter protection unhelpful:
« Attacker’'s CV-Search for learning rate / epochs yields more effective attack
APl response granularity has little effect:
« Returning all probabilities / top label yield same performance for agreement
Using more complex model for theft useful to reach better attack performance
« But any mismatch in models yields worse transferability - model confidentiality can help
Natural data is better than synthetic data - use as much as possible
Defenses plausible, but robust detection still an open problem

We share code with bona fide researchers. Thank you! N
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Different victim/surrogate architectures

Effect on test agreement:

Diagonal: victim/surrogate with same
complexity

Beneficial for adversary to use more
complex model architecture

Victim model complexity
3 layers 2 layers

Detrimental for adversary to use lower-
complexity surrogate models
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