
Hardware-assisted
Run-time Protection
Thomas Nyman, Hans Liljestrand, Lachlan Gunn, N. Asokan

2

How to thwart run-time attacks?

Run-time attacks are now routine

Software defenses incur security vs. cost tradeoffs

Hardware-assisted defenses are attractive

3

ARMv8.3-A PA – PAC Generation

Adds Pointer Authentication Code (PAC) into unused bits of pointer

• Keyed, tweakable MAC from pointer address and 64-bit modifier

• PA keys protected by hardware, modifier decided where pointer created and used

tag/PAC sign ext./PAC virtual address (AP)

reserved bit8 bits VA_SIZE bits

64-bit modifier (M)

PA key (K)HK(AP, M)

3 – 23 bits

general purpose registers

configuration register

ARM. Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile. version E.a. (2019)

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

4

Example: -msign-return-address

func {

str LR

…

…

ldr LR

ret

}

STACK

verify PAC

PAC?PAC? return address

generate PAC ia key

PACPAC return address

return address

pacia LR, SP

autia LR, SP PA

Function return address

ia key

Deployed in GCC 5.0 and LLVM/Clang 7.0

pacia – add PAC

autia – authenticate

Qualcomm “Pointer Authentication on ARMv8.3” (2017)

https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf

5

PA prevents arbitrary pointer injection

• Modifiers do not need to be confidential

• Visible or inferable from the code section / binary

• Keys are protected by hardware and set by kernel

• Attacker cannot generate PACs

func {

pacia LR, SP

str LR

…

…

ldr LR

autia LR, SP

ret

}pacia – add PAC

autia – authenticate

key

pointer

modifier

6

func1 {

pacia LR, SP

str LR

…

func2 {

pacia LR, SP

str LR

…

ldr LR

autia LR, SP

ret

}

..ab08

..ab10

..ab18

..ab20

..ab28

..ab30

..ab38

..ab40

..ab48

..ab50

PA only approximates fully-precise pointer integrity
Adversary may reuse PACs

STACK

func1 stack frame

…

/* func1() */

brl %func1

…

/* func2() */

brl %func2

…

SP
func2 stack frame

PAC+ret_address_2PAC+ret_address_1PAC+ret_address_1

pacia – add PAC

autia – authenticate

[LNWPEA19] PAC it up: Towards Pointer Integrity using ARM Pointer Authentication. USENIX Security (2019)

https://www.usenix.org/conference/usenixsecurity19/presentation/liljestrand

7

PA-assisted Run-time Safety (PARTS)

Expands scope of PA protection

• Return address signing

• Code pointer signing

• Data pointer signing

Mitigates pointer reuse by binding

• return addresses to the function definition

• code and data pointers to the pointer type

[LNWPEA19] PAC it up: Towards Pointer Integrity using ARM Pointer Authentication. USENIX Security (2019)

func {

mov Xmod, SP

mov Xmod, #f_id, #lsl_16

pacia LR, Xmod

…

mov Xmod, SP

mov Xmod, #f_id, #lsl_16

retab Xmod

}

pacib – add PAC with instr A-key

retab – authenticate and return

https://www.usenix.org/conference/usenixsecurity19/presentation/liljestrand

8

Can we do more than PARTS?

PARTS narrows the scope of reuse attacks

• but cannot completely prevent them

How to optimally minimize scope for reuse attacks?

• Having unique modifiers often impossible

• Static approaches limited to large equivalence classes

8

9

Authenticated Call Stack: high-level idea

Chained MAC of authentication tokens cryptographically bound to return addresses

• Provides modifier (auth) bound to all previous return addresses on the call stack

• Statistically unique to control-flow path

• prevents reuse

• allows precise verification of returns

ret0 ret1

auth0 = HK(ret0, 0) auth1 = HK(ret1, auth0) authn = HK(retn, authn-1)

retn

authi , i ∈ [0, n − 1] bound to corresponding return addresses, reti , i ∈ [0, n], and authn

[LNGEA19] PACStack: an Authenticated Call Stack preprint (2019)

https://arxiv.org/abs/1905.10242

10

PACStack instrumentation

• Generate 16-bit auth with pacib instruction

and embed in PAC-bits

• Topmost authn is always

• Stored securely in dedicated CPU register (LR)

• Passed to callees via the x28 register

prologue:

str X28, [SP] ; stack ← aretn−1

pacib LR, X28 ; LR ← aretn

function_body:

...

epilogue:

ldr X28, [SP] ; X28 ← aretn-1’ from stack

autib LR, X28 ; LR ← (retn or retn
∗)

ret

In dedicated register

ret0 ret1

auth0 = HK(ret0, 0) auth1 = HK(ret1, auth0) authn = HK(retn, authn-1)

retn

11

Mitigation of hash-collisions: PAC masking

• Challenge: PAC collisions occur on average after 1.253*2b/2 return addresses

• For b=16 this is only 321 addresses

• Solution: Prevent recognizing collisions by masking each auth

• pseudo-random mask generated using pacib(0x0, authi-1)

Attack w/o Masking w/ Masking

Reuse previous auth collision 1 2-b

Guess auth to existing call-site 2-b 2-b

Guess auth to arbitrary address 2-2b 2-2b

Maximum probability of success for different attacks

12

PARTS & PACStack performance

Functional evaluation

• On ARM Fast Models 11.4 FVP

Performance evaluation

• 96board Kirin 620 HiKey board

• PA-analog with overhead of 4-cycles

• Based on QARMA overhead estimate

• Uses XOR operations to “sign” pointer

PARTS on nbench-byte-2.2.3

• Return address protection <0.5%

• Code pointer integrity <0.5%

• Data pointer integrity ~20%

PACStack on SPEC CPU 2017

• Without masking ~0.4%

• With masking ~0.9%

• Cf. LLVM ShadowCallStack ~0.5%

[A17] The QARMA block cipher family IACR (2017)

https://static.docs.arm.com/100966/1104/fast_models_fvp_rg_100966_1104_00_en.pdf
http://www.math.utah.edu/~mayer/linux/bmark.html
https://www.spec.org/cpu2017
https://eprint.iacr.org/2016/444.pdf

How does return-address protection

using PA compare with other hardware-

assisted approaches?

14

Intel CET vs. ARMv8.3-A PA

Intel CET ARMv8.3-A PA

Return address protection

Indirect branch protection (coarse-grained) (PARTS)

Data pointer protection (PARTS)

Enforcement model Deterministic Probabilistic

Immune to pointer reuse (PACStack)

Memory Overhead Low to Moderate N/A

Run-time Overhead ? (likely low) Low

[LNWPEA19] PAC it up: Towards Pointer Integrity using ARM Pointer Authentication. USENIX Security (2019)

[LNGEA19] PACStack: an Authenticated Call Stack preprint (2019)

https://www.usenix.org/conference/usenixsecurity19/presentation/liljestrand
https://arxiv.org/abs/1905.10242

15

Other uses of PA

PA is a general-purpose primitive

PCan - using PA to generate stack-canaries

• Return address protection already functionally a canary:

• Return address corruption due to overflow is detected

• No reference canary needed

• Canaries can differ from function to function

• Reuse still possible, but PCan can be anchored to other schemes

• E.g., with PACStack statistically unique canaries for each function call

[LGNEA19] Protecting the stack with PACed canaries SysTEX ’19 (to appear 2019)

https://arxiv.org/pdf/1909.05747

16

Other hardware primitives

Use other emerging hardware primitives for run-time protection?

• For instance: memory tagging, branch target indication

• Can these strengthen each other?

• What becomes feasible by combining these primitives?

• How do different types of hardware-assistance compare?

➢ Is there an optimal set of hardware primitives for new platforms?

16

17

github.com/pointer-authentication

Optimal use of hardware primitives

PA is a powerful security primitive, but others are on the horizon

How to combine them for best trade-off in security, cost, and performance?

17

https://pacstack.github.io

https://github.com/pointer-authentication
https://pacstack.github.io/

