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Preliminaries



Black-box evasion attacks

Black-box attacks advancing rapidly [1,2]

… but efficiency depends on what is API

… whether is targeted attack

Many realistic APIs are restrictive

• Scores for a small subset of all classes

• Partial Information

• Existing targeted attacks inefficient or 

ineffective

API

[1] Ilyas et al. Black-box adversarial attacks with limited information and queries. ICML’18.

[2] Co et al. Procedural Noise Adversarial Examples for Black-Box Attacks on Deep Convolutional Networks. ACM CCS 2019

API

https://arxiv.org/abs/1804.08598
[2] Co et al. Procedural Noise Adversarial Examples for Black-Box Attacks on Deep Convolutional Networks. ACM CCS 2019


Query-only methods: Natural Evolution Strategies

Case study on NES [1, 2]:

• Most effective query-only method for 

targeted adversarial example crafting for 

such partial information APIs

• Start / goal image distinction

For-loop with three phases:

• Increase pseudo-log-likelihood via NES

• Line search for decreasing perturbation

• Update or backtrack (reset search)

4[1] Ilyas et al. Black-box adversarial attacks with limited information and queries. ICML’18.

[2] https://github.com/labsix/limited-blackbox-attacks/blob/master/attacks.py

Illustration on [1]

https://arxiv.org/abs/1804.08598
https://github.com/labsix/limited-blackbox-attacks/blob/master/attacks.py


Targeted attacks on restrictive APIs

Query-only methods:

• High effectiveness, any DNN attackable

• Inefficient: requires 1000s – 10,000s queries per sample on restrictive APIs

Transferability ensemble methods [1,2]

• Efficient: first query may already succeed

• Ineffective: success rate is low

• Case study on MIFGSM

5[1] Liu et al. Delving into transferable adversarial attacks. ICLR’17

[2] Dong et al. Boosting adversarial attacks with momentum. CVPR’18 NIPS adversarial attack competition winners

[3] dongyp13/Targeted-Adversarial-Attack https://github.com/dongyp13/Targeted-Adversarial-Attack) 

“We notice that targeted attacks have little transferability …  it's hard … for the ImageNet dataset.”

What can the adversary do to make targeted evasion 

more efficient while retaining effectiveness?

https://arxiv.org/abs/1611.02770
https://arxiv.org/abs/1710.06081
https://github.com/dongyp13
https://github.com/dongyp13/Targeted-Adversarial-Attack


Adversary model
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APIAPI

90%: sea gull

8%: hummingbird

…

64%: water ox

20%: ox

…

Minimum distance adversarial examples

• Up to 5% mod. (12.8/255) on 𝐿∞-norm [1]

• Partial information on API outputs 

(label+prob.), API access black-box

Evaluation

• 100 images, adapted from [2]:

• Also includes start images

• Evaluation on ImageNet classifiers:

• ResNet-101/152, VGG16, Inception v3

• Realistically adversary has access to 10s of 

surrogate models

[1] Ilyas et al. Black-box adversarial attacks with limited information and queries. ICML’18.

[2] Liu et al. Delving into transferable adversarial attacks. ICLR’17 : sunblaze-ucb/transferability-advdnn-pub https://github.com/sunblaze-
ucb/transferability-advdnn-pub/blob/master/data/image_label_target.csv

Start Goal Tgt class

Water ox

Brown bear

French horn

… … …

https://arxiv.org/abs/1804.08598
https://arxiv.org/abs/1611.02770
https://github.com/sunblaze-ucb
https://github.com/sunblaze-ucb/transferability-advdnn-pub
https://github.com/sunblaze-ucb/transferability-advdnn-pub/blob/master/data/image_label_target.csv


Results



Baseline results
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Success rate: mean queries

Adversary has large ensemble with 10/11 components

• Targeted transferability between 47% and 58%

Transferability worst on Inception v3

• Resizing operation from 224 → 299 pixels, functions as a defense [1]

Ensemble transferability Query-only (max 100,000 queries)

Inception v3 12% : 1 88%: 44,158

ResNet-101 47%: 1 89%: 32,864

VGG16 47%: 1 94%: 28,875

ResNet-152 58%: 1 91%: 34,689

[1] Xie et al. Black-box adversarial attacks with limited information and queries. ICLR’18.

https://arxiv.org/abs/1804.08598
https://github.com/cihangxie/NIPS2017_adv_challenge_defense
https://arxiv.org/abs/1804.08598


Basic agility

We investigate agile adversaries:

• Can combine methods to reduce queries

Basic agile adversary:

• Ensemble method, then query-only: EQ

• Improves efficiency and effectiveness

• Overcome catastrophic starts of query-only
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Efficiency

Agile adversary can improve 

efficiency / effectiveness



Improved efficiency / effectiveness

Can we improve efficiency / effectiveness trade-off 

by designing a new type of attack?

1. Take [1] work as a starting point, maintain start / goal image distinction as in [1]

• Benefits for effectiveness?

2. Replace NES with ensemble-based gradient [2]

• NES [1] perturbation calculation requires ~ 100 queries per sample

3. Avoid queries from line search

• Unnecessary if ensemble gradient close to API model’s

10[1] Ilyas et al. Black-box adversarial attacks with limited information and queries. ICML’18.

[2] Liu et al. Delving into transferable adversarial attacks. ICLR’17

[3] Dong et al. Boosting adversarial attacks with momentum. CVPR’18

PRISM: Partial Information Substitute Model Attack

https://arxiv.org/abs/1804.08598
https://arxiv.org/abs/1611.02770
https://arxiv.org/abs/1710.06081


PRISM: variants and performance
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PRISM and PRISMR

• Use all ensemble components or random

subset for gradient calculation

• More effective than Ensemble alone 

• Require more queries, but can increase 

effectiveness over regular ensemble-use

Illustration on PRISM

Start from same-class start image

𝒙𝑠𝑡𝑎𝑟𝑡

𝒙𝑔𝑜𝑎𝑙



Illustration on PRISM trajectory on ResNet-101
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Localized 

perturbations

𝐿∞-distance to 𝑥𝑠𝑡𝑎𝑟𝑡

𝒙𝑠𝑡𝑎𝑟𝑡𝒙𝑔𝑜𝑎𝑙 𝒙𝑎𝑑𝑣
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Pareto-efficiency

Given the same task, which methods are 

most efficient?

Upwards trend: 

• Some experiments are harder than others

• Larger number of min-queries to succeed

• Transferability works in many cases

• Similarity between surrogates and victim 

(next slide)
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Methods trade off efficiency for effectiveness
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Impact of ensemble size
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More ensemble components

Higher success rate, less queries required



Dominance
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Given number of minimum queries, can 

we prescribe when methods perform 

better than others?

• Enables efficient strategy determination

Example efficient strategy:

• Ens: 0—1

• PRISM: 1—50

• PRISMR: 50 – 3000 

• Query-only: 3000+

>> EPPRQ

Superimposed results for 

IncV3/ResNet-101/VGG16



Fully agile attacker

Fully agile adversary EPPRQ:

• Effectiveness:  +3% to +13%

• Query-efficiency: 1.97x to 24.4x less (average)

Victim Fully agile 

EPPRQ

Basic agile 

EQ

Baseline 

QO

ResNet-101 100%: 1171 95%: 6.55x 94%: 11.4x

ResNet-152 100%: 3005 95%: 10.4x 91%: 24.4x

VGG16 97%:   3359 94%: 4.98x 94%: 8.26x

Inception v3 94%: 13219 89%: 1.97x 88%: 2.27x

Alternative strategies

Success rate: average qs to reach



Different victim APIs (ImageNet)
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• Most efficient when surrogate

models available of similar 

architecture

– ResNet-101 and ResNet-152

• Typically 2—3 orders faster

than query-only alone



Case study: realistic APIs
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PRISM / PRISMR effective against real APIs

• Reduce number of queries for one 

example from ~20,000 [1] to ~400—1000

• Example as in [1] 

• Demo:

[1] Ilyas et al. Black-box adversarial attacks with limited information and queries. ICML’18.

https://arxiv.org/abs/1804.08598


Realistic APIs

Same PRISM / PRISMR examples transfer across all tested APIs
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IBM Watson

Clarifai

Microsoft Azure Cognitive



Conclusion

What can the adversary do to make targeted evasion more efficient 

while retaining effectiveness?

Combine availability of large ensembles + partial-information access to victim API (PRISM)

and

analyze and switch through different methods (adversary agility)

→ find adversarial examples efficiently and effectively

Mika Juuti

mika.juuti@uwaterloo.ca
Juuti et al. Making targeted black-box evasion attack effective and efficient. AISec’19. https://arxiv.org/abs/1906.03397

mailto:Mika.juuti@uwaterloo.ca
https://arxiv.org/abs/1906.03397


21


