
Hardware Platform Security
for Mobile Devices

Lachlan J. Gunn N. Asokan Jan-Erik Ekberg
Hans Liljestrand Vijayanand Nayani Thomas Nyman

April 8, 2022

2

Abstract

Today, personal mobile devices like smartphones and tablets are ubiquitous.
People use mobile devices for fun, for work, and for organizing and managing
their lives, including their finances. This became possible because over the last
two decades, mobile phones evolved from closed platforms intended for voice
calls and messaging to open platforms whose functionality can be extended
in myriad ways by third party developers. Such wide-ranging scope of use
also means widely different security and privacy requirements for those uses.
The mobile device ecosystem involved multiple different stakeholders such as
mobile network operators, regulators, enterprise information technology ad-
ministrators, and of course ordinary users. So, as mobile platforms became
gradually open, platform security mechanisms were incorporated into their ar-
chitectures so that the security and privacy requirements of all stakeholders
could be met. Platform security mechanisms help to isolate applications from
one another, protect persistent data and other on-device resources (like access
to location or peripherals), and help strengthen software against a variety of
attack vectors. All major mobile platforms incorporate comprehensive soft-
ware and hardware platform security architectures, including mechanisms like
trusted execution environments (TEEs).

Over the past decade, mobile devices have been undergoing convergences
in multiple dimensions. The distinction between “mobile” and “fixed” devices
has blurred. Similar security mechanisms and concepts are being used across
different platforms, leading to similar security architectures. Hardware en-
ablers used to support platform security have gradually matured. At the same
time, there have also been novel types of attacks, ranging from software at-
tacks like return- and data-oriented programming to hardware attacks like side
channels that exploit micro-architectural phenomena. It is no longer tenable to
assume that the current hardware security mechanisms underpinning mobile
platform security are inviolable.

The time is therefore right to take a new look at mobile platform security,
which brings us to this book. We focus on hardware platform security. The book
is divided into four parts: we begin by looking at the why and how of mobile
platform security, followed by a discussion on vulnerabilities and attacks; we
conclude by looking forward discussing emerging research that explores ways
of dealing with hardware compromise, and building blocks for the next gener-
ation of hardware platform security.

3

4

Our intent is to provide a broad overview of the current state of practice
and a glimpse of possible research directions that can be of use to practitioners,
decision makers, and researchers.

Part I

Mobile Platform Security:
Why?

5

Chapter 1

Introduction

Today, mobile devices such as smartphones and tablets are very widely de-
ployed. All modern mobile device platforms incorporate sophisticated soft-
ware and hardware platform security mechanisms. To understand how this
came to be, we need to start in the late 1990s.

1.1 What motivated mobile platform security?

The mobile phone revolution was well under way by the mid 1990s. Initially,
mobile phones were simple embedded devices with fixed functionality: voice
calls and text messages. Early on, the mobile phone industry recognized the
power of billions of people having general-purpose computing devices in their
hands. Personal digital assistants were already available and demonstrated
the range of uses for portable, personal general-purpose computing devices.
Therefore, already by the mid 1990s, the industry was working towards open-
ing up mobile phone platforms so that users gain the ability to extend their
functionality, by installing third-party software modules. This development
directly led to today’s smartphones and tablets with their “app” ecosystems.

The industry saw the potential for new types of applications like mobile
payments, public transport ticketing, and digital media consumption. But it
also realized that for these applications to succeed, open mobile devices needed
additional mechanisms to safeguard the security and privacy requirements of
these novel, and potentially high-value, applications.

Furthermore, the mobile phone ecosystem already had well-established stake-
holders. They were sensitive to the security and privacy concern that could
arise in the transition from closed fixed-function devices to open platforms. Ex-
isting commodity general-purpose computing platforms at the time, like those
for personal computers, did not incorporate the platform security mechanisms
necessary to address these concerns. Consequently, they wanted to mediate
this transition so that their own interests were safeguarded. This, too, drove
the development of new platform security mechanisms. Mobile platform se-

7

8 CHAPTER 1. INTRODUCTION

curity architectures emerged because of the need to address these stakeholder
concerns as mobile devices opened up [178].

1.2 Stakeholders

An important class of stakeholders are mobile network operators (MNOs) (also
known as “carriers”) who are motivated by business interests. An example
of a business interest of MNOs is the need to strongly authenticate their sub-
scribers. This need led to the introduction of subscriber identity modules (SIMs)
(discussed further in Section 2.2) right from the beginning. Another example
of a business interest of MNOs is the need for robust technical mechanisms to
support the subsidy-lock business model where a MNO gives a mobile phone to
a subscriber for free or below cost, in return for a commitment to maintain the
subscription for a specified period of time. The requirement to technically en-
force subsidy locks translated into each device having an unforgeable unique
identifier and the ability to run subsidy-lock enforcement software in a manner
that cannot be bypassed.

Another, equally important, class of stakeholders are regulators who safe-
guard the public good. An example of a regulatory need is to ensure that radio-
frequency transmission parameters, which are typically calibrated for each de-
vice at the time of manufacture, cannot be tampered with. This need can be
met with secure (integrity-protected) storage for storing these parameters.

A third class of stakeholders are end-users. They were used to mobile
phones that were reliable and trustworthy. They expected the same degree
of reliability and trustworthiness to be maintained, even as mobile phone plat-
forms were opening up.

There are other stakeholders in the ecosystem, like enterprise administra-
tors, and of course the mobile phone manufacturers —also known as original
equipment manufacturers (OEMs)—and operating system (OS) vendors them-
selves. To see what kinds of mechanisms are needed to protect the interest of
different stakeholders, it is necessary to understand the threat models from the
perspectives of these stakeholders.

1.3 Threat models

A threat model involves characterizing the adversary in terms of its capabili-
ties, and the assets that need to be protected from these adversaries. For ex-
ample a software adversary is assumed to be capable of influencing one or more
software modules on the victim device. The adversary’s control may be lim-
ited to a single application (software in user space) or can extend to privileged
software like the OS itself. In contrast, a hardware adversary can directly interact
with, and possibly manipulate, the hardware components on the victim device.

Rather than presenting an exhaustive treatment of all possible threat mod-
els, we will illustrate the concept with three informal examples.

1.4. CHAINS OF TRUST 9

First, consider the threat of a user’s address book being exfiltrated from the
device by a malicious third-party application that the user happened to install.
We are concerned with a software adversary (the third-party developer) and
the asset that needs protection is the address book. Standard hardware support
(for memory management and process isolation) combined with a good OS se-
curity architecture (providing access-controlled persistent storage for each ap-
plication) would be sufficient to provide the required protection. In Chapter 3
we will discuss OS security architectures.

Next, consider the same setting as above, but with a different asset: cre-
dentials for accessing financial transactions like online banking. While we are
still concerned with a software adversary, the value of the asset is significantly
higher, and its compromise can result in substantial losses. Consequently, rely-
ing only on OS security is not reasonable because an OS is a complex software
component with a large threat surface for the attacker to exploit. Additional
hardware support for protecting high-value assets is justifiable. Hardware-
assisted trusted execution environments (TEEs) allow small pieces of trusted
software on a general-purpose computing device to be isolated from the rest of
the software on the same device, including the OS and other applications. To-
day TEEs are ubiquitous. Nearly every smartphone or tablet is likely to have a
processor with TEE capabilities. Many personal computers are also equipped
with TEEs. The ubiquity of TEEs is not a recent phenomenon [93]: hardware-
assisted TEEs started to appear in mobile phones from the early 2000s. For a
technology that is so widely deployed, for so long, the origins and trajectory
of TEE technologies are poorly understood. Our primary focus in this book
is to explore hardware platform security for mobile devices, with a particular
emphasis on TEEs.

Finally, consider the case of technical mechanisms for subsidy-lock enforce-
ment. The adversary in this case is the user of the device who has physical
access to the device. The asset that the adversary wants to compromise is the
binding between the mobile device hardware and the MNO (so that a success-
ful attack will result in breaking the binding, allowing the adversary to use
the device with a different MNO subscription). OS security alone is not suf-
ficient. Since we now deal with a potential hardware adversary, we must use
hardware-security mechanisms that can withstand physical attack.

1.4 Chains of trust

In a given scenario, the party relying on the protection mechanism trusts the
software and hardware components used to realize the mechanism. A chain of
trust refers to the process of building up this trust, starting from one or more
roots of trust. In the first example above, while OS security is sufficient, the
relying party, the user, needs to trust that the correct OS is running on the
device. Platform integrity (Chapter 4) makes it possible to build up this trust.
Higher level platform security mechanisms like OS security rely on underlying
building blocks like platform integrity (Chapter 4), hardware-assisted isolation

10 CHAPTER 1. INTRODUCTION

(Chapter 5), and cryptographic primitives realized in hardware (Chapter 6).
An important feature of hardware platform security mechanisms is allow-

ing remote relying parties to build up trust in a device. In the second example
above, a bank may need to convince itself that the user is accessing her bank
account from a secure device before allowing access. This feature is called re-
mote attestation, which is widely supported by modern TEEs. In Chapter 5 we
will discuss the chains of trust involved in remote attestation in modern TEEs.

We begin with an overview of the history of mobile hardware platform se-
curity mechanisms (Chapter 2), and provide an overview of OS security (Chap-
ter 3) to understand how an OS can make use of these mechanisms. We will
explore the nuts and bolts of how platform security is implemented in today’s
devices, focusing on hardware platform security (Part II), and discuss attacks
against hardware platform security mechanisms (Part III). We will conclude
with a brief foray into future outlook for hardware platform security (Part IV).
Notes on the scope of this book: The focus of this book is on hardware plat-
form security in mobile devices. We do cover OS security in Chapter 3, but
from the perspective of motivating hardware platform security. Mobile device
platforms also incorporate sophisticated software platform security mechanisms.
We refer readers interested in this topic to books dedicated to the topic such as
[35]. We also do not cover specific high-level attacks such as jail-breaking (re-
moving manufacturer-imposed restrictions on what software can be installed
on a mobile device) or rooting (obtaining the privileges of the maximally priv-
ileged “root” user on Unix-based mobile OSs). However, the basic attacks we
describe in Part III can, and often are, used as stepping stones for these high-
level attacks.

Chapter 2

Historical Overview

The requirements we saw in Chapter 1 led to mobile device and platform ven-
dors developing and deploying software and hardware platform security ar-
chitectures. Nokia Radio Application Processors are believed to be the first
trusted execution environments (TEEs) deployed at a large scale [178]. These
were followed shortly by Texas Instruments’ M-Shield™ [248] and subsequently
by ARM’s TrustZone™[6] which represents the overwhelming share of de-
ployed mobile TEEs today.

In the non-mobile setting, hardware security modules (HSMs) used in the
financial sector (starting with IBM’s CryptoCard1) are an early example of a
TEE. Trusted Computing Group’s Trusted Platform Modules (TPMs) [34] are
widely deployed in personal computers, where they are used for boot integrity
and disk encryption, but they have not found common use in the mobile space.
Recently, Intel’s Software Guard Extensions (SGX) [182] has become the most
widely studied TEE architecture, thanks to the easy availability of both the
software and hardware2. SGX is primarily deployed in cloud settings to enable
confidential computing use cases [5, 183]. Desktop use cases for SGX include
Blu-ray digital rights management (DRM) [253]

2.1 Hardware security modules

Early examples of the inclusion of a dedicated security co-processor were moti-
vated by the need to perform sensitive cryptographic operations isolated from
other computations in systems handling financial transactions. Transaction
processing for Europay, Mastercard and Visa (EMV) payment cards use HSMs
as the primary security device for key management [85]. An HSM is a discrete
computing device usually encapsulated in tamper-evident coating. HSMs in
backend systems typically include specialized cryptographic hardware accel-
erators to enable high throughput because they need to process transactions in

1https://www.ibm.com/security/cryptocards/
2https://software.intel.com/en-us/sgx

11

https://www.ibm.com/security/cryptocards/
https://software.intel.com/en-us/sgx

12 CHAPTER 2. HISTORICAL OVERVIEW

real-time. An HSM can be realized as either as a stand-alone peripheral device
or as an extension board connected directly to the internal bus of the host com-
puter. The operational keys are generated in the cryptographic co-processor
within the HSM and are then saved either in a keystore file or in application
memory, encrypted under the master key of that co-processor. Any HSM with
an identical master key can use those keys.

The first commercially available civilian HSMs were deployed already in
the 1970s, originally for IBM mainframes. The IBM 3845 and 3846 data encryp-
tion devices [140] allowed exported encryption keys to be encrypted using the
recently standardized DES algorithm. These early HSMs included secure key
entry devices (cards and PIN pads) for master key loading, random number
generation capabilities for seeding, and persistent storage for key materials.
They were instrumental in securing early electronic banking, such as automatic
teller machines (ATMs).

2.1.1 HSMs in radio communication

HSMs are also extensively deployed for modern military software-defined ra-
dio (SDR) communication. SDR refers to wireless communications where the
transmitter and receiver mixing, filtering, amplification, modulation/demodulation
etc. occur in software instead of in conventional radio electronics. With SDR,
software-based transmission algorithms can be downloaded and adapted over
the lifecycle of the hardware. While analog military radio equipment include
dedicated cryptographic chips for (proprietary) ciphers that are required for
communication with compatible equipment, SDR equipment have to support
a large number of cryptographic schemes, including legacy protocols and al-
gorithms. Consequently military SDR equipment, such as the U.S. Joint Tacti-
cal Radio System (JTRS), employ embeddable HSMs specifically designed for
communication security. The Advanced INFOSEC Machine (AIM) [106] is one
such programmable, embeddable cryptographic unit developed by Motorola
in the late 1990s. It consists of a hardware platform with three independent
cryptographic processors, one for key management and two programmable
processors for traffic encryption/decryption. The key management crypto-
graphic engine (KMCE) is based on a 32-bit reduced instruction set computer
(RISC) processor and includes a math co-processor designed for public key
algorithm processing. The KMCE runs a read-only memory (ROM)-based Se-
cure Operating System (SOS). The SOS provides a multi-security level, multi-
tasking environment for the cryptographic applications which allowed the func-
tionality of the AIM to be extended by software. The chip contains the neces-
sary building blocks to implement encryption algorithms such as DES, and the
classified SAVILLE and BATON cryptographic algorithms used by U.S. and
NATO. Its successor, AIM II [107] is specifically designed for JTRS. Around the
same time, a similar crypto-chip, called the General Crypto Device (GCD) [161],
was developed in Europe by Dutch electronics giant Philips.

The use of HSMs such as AIM and GCD are early examples of the use of
TEEs in telecommunications. The sensitivity of military communication jus-

2.2. SIMS, MOBILE HANDSETS, AND SMART CARDS 13

tified the inclusion of dedicated components for security into end devices.
However, for civilian telecommunication devices, the widespread use of TEE-
technology only occurred when two conditions were met: 1) economic incen-
tives emerged to justify requiring strong, hardware-based security, and 2) low-
cost technological solutions that met those requirement were developed.

2.2 SIMs, mobile handsets, and smart cards

During the early 1990s, civilian wireless communication systems also began
to employ hardware-assisted security. Mobile network operators (MNOs) re-
quired a reliable way of preventing illicit use of a subscriber identity for mak-
ing phone calls from mobile phones. For this purposes, the subscriber identity
module (SIM) card [132] was developed by Munich smart-card maker Giesecke
& Devrient, who sold the first 300 SIM cards to the Finnish MNO Radiolinja in
1991. The use of SIM cards became mandatory in the Global System for Mobile
Communications (GSM) standard. Each SIM card contains an international
mobile subscriber identity (IMSI) that uniquely identifies the user of the mo-
bile network and a unique symmetric cryptographic key (Ki) assigned to it by
the MNO during SIM card personalization. The SIM ensures the integrity of
the IMSI and Ki, and the confidentiality of Ki. Ki allows the MNO to authenti-
cate the SIM card when the mobile phone connects to the network. When the
mobile phone connects, it obtains the IMSI from the SIM card, and requests
network access by transmitting the IMSI to the MNO. The MNO looks up the
corresponding Ki of the IMSI from its subscriber database, and generates a ran-
dom nonce as a challenge which is transmitted to the mobile phone. The mo-
bile phone passes the challenge to the SIM card, which signs it, and returns the
signed response, which is transmitted back to the MNO by the mobile phone.
The MNO compares the signed response to the response calculated using the
MNO’s copy of the Ki. If they match, the authentication is successful.

Modern SIM cards are based on tamper-resistant universal integrated cir-
cuit card (UICC) technology [238] similar to smart cards. UICC cards can host
multiple software applications, typically developed using Java Card software
technology [98]. The applications include a SIM application for GSM, and uni-
versal subscriber identity module (USIM) for UMTS (3G), Long-Term Evolu-
tion (4G), and 5G network authentication. MNOs can also provision additional
value-add applications to UICC cards that they issue, such as mobile banking
and phone-based money transfer. UICC application can interface with mobile
phone users or initiate actions via a card application toolkit (CAT) part of the
mobile phone operating system (OS): SIM Application Toolkit (STK) for GSM
systems, and USIM Application Toolkit (USAT) for later generation networks.
UICCs can support an optional bearer independent protocol (BIP), which al-
lows MNOs to deliver over-the-air (OTA) updates to UICC applications either
via cell broadcasts, or short message service packets.

All UICC applications are subject to authorization by the issuer security do-
main (ISD), namely the MNO who issued the UICC. Consequently UICCs are

14 CHAPTER 2. HISTORICAL OVERVIEW

effectively closed application ecosystems; it is not possible for third-party de-
velopers to leverage UICC security without co-operating with MNOs in their
region. This puts add-on services operated by large MNOs into an advan-
tageous position compared to third-party alternatives, as is the case with M-
Pesa [179], a money transfer application operated by Safaricom and Vodacom,
the largest mobile MNO in Kenya and Tanzania. In developing countries, such
as Kenya, low-cost feature phones are still prevalent, and UICC applications
is the only ubiquitous application platform available to the majority of mobile
phone users. Proprietary SIM overlay technology (a.k.a. “slim SIM” or “skin
SIM”) [190] can enable third-party applications to operate independently of the
underlying UICC.

The SIM overlay is a computer chip embedded into thin plastic sheet that
can be placed on top of a standard UICC card within a mobile phone. They
were originally developed to support low-cost mobile roaming for Chinese
customers traveling outside their home province. The overlay SIM acts as an
independent security device, and allows additional functionality to be added
to any mobile phone by attaching the overlay SIM to an MNO-issued UICC.
However, an overlay SIM also has the potential to facilitate a man-in-the-middle
attack by observing sensitive data such as personal identification numbers (PINs)
being transmitted to the underlying UICC, or initiate, intercept and/or block
mobile communications or CAT instructions [130]. By obtaining unauthorized
access to the UICC SIM applications they could also change MNO configura-
tion settings.

Embedded SIMs (eSIMs) [132] are secure elements physically integrated
into a mobile phone. eSIM chips can be directly soldered onto the device or
even embedded into the system on chip (SoC) itself. This physical integration
necessitates MNO SIM or USIM profiles to be remotely provisioned. Addition-
ally, unlike removable SIM cards, a single eSIMs may need to store multiple
MNO profiles simultaneously.

2.3 Processor secure environments

Towards the late 1990s, mobile phones were transitioning from closed systems
to open application platforms, for which third-party applications could be de-
veloped using the Java programming language. While not yet true smart-
phones, the feature phones of the time were gradually starting to resemble
small, general-purpose computers. This brought with it new business oppor-
tunities, but also new challenges for device security; regulators and MNOs
needed to ensure the protection of certain pieces of information after the mo-
bile phone had left the manufacturing line. In particular, regulators required
that the device identity, the international mobile equipment identifier (IMEI),
remain unchanged in order to act as a theft deterrent. IMEIs of stolen mobile
phones are blacklisted by network operators, thereby reducing the economic
value of stolen mobile phones and deterring theft [131].

Similarly, radio frequency parameters, which could affect the quality of ser-

2.3. PROCESSOR SECURE ENVIRONMENTS 15

vice of other mobile phones in the area, or the safety of the user, should also
remain unchanged. MNOs, who were the primary customers of large origi-
nal equipment manufacturers (OEMs) such as Nokia, were concerned with en-
suring that their subscribers receiving subsidized mobile devices do not break
their contract terms. Consequently, they required a strong subsidy lock mecha-
nism (colloquially known as SIM lock), which would tie the mobile phone to
a particular MNO for the duration of the contract. Another emerging use case
was DRM for digital content sold by the MNOs; initially ringtones, later games
and music.

Nokia was the first to pursue a hardware-enforced processor secure envi-
ronment. At the time, the security of Nokia’s Digital Core Technology (DCT)
generation phones was mainly based on obfuscated software solutions and
protected by secrecy within the organization; even within the company, only
few security professionals knew the exact design and requirements of the DCT
security architecture [178]. The leading market share of Nokia made it an at-
tractive target for hackers who, (typically for a small fee) would “unlock” or
“unbrand” subsidy-locked phones by either reverse engineering the valid un-
lock codes, or reflashing the phone with a different firmware version.

The fourth generation of DCT mobile phones included hardware compo-
nents in the form of one-time-programmable memory to aid in the secure stor-
age of sensitive device parameters. However, in the case of SIM locks, the
economic motives to break device security were higher than the capabilities
of the protection mechanism deployed at the time. Consequently, the revenue
losses of important MNO customers resulting from SIM unlocking, increased
the pressure to design a better security architecture for the upcoming genera-
tion of Nokia phones.

Within Nokia the idea of a coherent, hardware-enforced platform security
originated within a team of engineers working with mobile payments and se-
curity [178]. Initial designs revolved around introducing a discrete security
co-processor to ensure the physical isolation of the security-critical operations.
However, the additional hardware chip in the bill of materials was deemed
too expensive in the extremely cost-conscious organization, whose competi-
tive advantage largely stemmed from its ability to keep manufacturing and
components costs in control. Instead, Nokia engineers opted to implement a
logically isolated secure processing mode within the main central processing
unit (CPU). This solution was not only more cost effective in terms of com-
ponent costs during manufacturing, but also functioned as common hardware
platform for solutions to different use cases. This processor secure environ-
ment [94] would form the cornerstone of Nokia’s Baseband 5 (BB5) generation
mobile phone security architecture.

Initial hardware designs were based on the Nokia’s own radio application
processors (RAPs), but from very early on Nokia collaborated with the U.S.
semiconductor and Integrated Circuit (IC) manufacturer Texas Instruments
(TI) with whom they had a close partnership at the time. The first BB5 mobile
phone, the Nokia 6630 (codename “Charlie”) was based on TI’s Open Multi-
media Applications Platform (OMAP) processors based on the ARM architec-

16 CHAPTER 2. HISTORICAL OVERVIEW

ture. TI would brand the processor secure environment technology initially
developed jointly with Nokia as M-Shield [248]. It was however in Nokia’s
interest to ensure that it could invite bids from multiple hardware manufac-
turers for processors implementing a security architecture meeting Nokia’s re-
quirements. This became possible around 2003, when ARM proposed to de-
velop system-wide hardware isolation architecture for secure execution for the
ARMv6-A application processor architecture which included security exten-
sions to the ARM SoC covering the processor, memory controllers and pe-
ripherals. ARM’s design would become known as TrustZone [6]. Integrating
TrustZone in ARM processor architecture would ensure that any semiconduc-
tor manufacturer that implemented the TrustZone security extensions could
supply Nokia with processor chips that met their requirements.

2.4 Trusted execution environments

In Chapter 1, we introduced the notion of TEEs – intuitively, a TEE is a comput-
ing environment on a device that a relying party trusts to a greater extent than
the rest of the software running on the same device. Consider a device running
a general-purpose operating system and applications, which, following stan-
dard practice, we will refer to as rich execution environment (REE) [119]. For
the purposes of this book we deem the device to have a TEE capable of running
trusted code, if it has the following capabilities, possibly based on hardware
support:

1. Isolation: the ability to run trusted code strongly isolated from the REE
so that the REE cannot influence or learn the computations carried out by
the trusted code,

2. Secure Storage: the ability for the trusted code to store persistent data
guaranteeing its integrity and confidentiality with respect to an adver-
sarial REE, even across reboots, and

3. (Remote) Attestation: the ability to convince a (possibly remote) party of
the presence of the above attributes, and the characteristics of the trusted
software protected by them.

This is an intentionally broad definition. It encompasses both physically dis-
tinct components—such as HSMs and TPMs—as well as processor secure en-
vironments where the isolation is logical and is enabled by extensions to the
processor hardware3.

TEEs have largely evolved based on business needs, a number of commer-
cial TEEs (Table A.1) have emerged over the years. For mobile TEEs there is
a framework of applicable standards, and a core set of these has reached criti-
cal mass in industry adoption. Standardization has followed in two contexts:

3Sometimes the term TEE is used as a synonym for the particular instance that we call "proces-
sor secure environments" in 5. The broad definition we adapt in this book is consistent with the
terminology used by GlobalPlatform [119].

2.4. TRUSTED EXECUTION ENVIRONMENTS 17

1) whenever and wherever common interfaces and application programming
interfaces (APIs) are needed for interoperability, and 2) where common agree-
ment for the formulation of the required security level for today’s TEEs has
been required.

The main standardization organization for mobile TEEs is the GlobalPlat-
form (GP) consortium4. GP provides a system architecture document [119]
that describes the main components of the standards set related to TEEs, and
how these individual standards contribute to the overall TEE system. Ostensi-
bly the GP TEE architecture is not tied to any particular underlying hardware
mechanism for ensuring isolation, but is, in practice, heavily influenced by the
ARM TrustZone security architecture. Consequently GP standards are primar-
ily adopted by TrustZone-based TEEs. Enclave architectures (Section 5.2), such
as Intel SGX, do not yet have well-defined interoperability specification. But
there are on-going efforts like the Linux Foundation’s Confidential Computing
Consortium which includes projects like the Open Enclave SDK5 to provide a
common development environment across different enclave architectures.

The GP TEE Client API [113] is the common operating system interface
(endpoint) to all TEE services. The specification primarily includes APIs for
installing trusted applications (TAs) within the TEE, and for allowing REE ap-
plications – also known as client applications (CAs) – to communicate with
their respective TAs, defining the data interaction model and the session man-
agement for this purpose. A separate Debug API, when available, enables a
TA developer to receive logs from his TA, and also some post-mortem data in
the case of critical crashes.

The GP TEE Internal API [114] is the specification against which TAs are
written. For the time being, it provides C-language binding. The internal API
defines the transactional model of TAs in the form of a set of standardized call-
back functions that are called when the TA is loaded, when it is connected to
initially, and when it receives an incoming command. The data formats are
TA-specific, but communication follows a paradigm of shared memory, allo-
cated by the caller and accessible by the TA, when an incoming message is
received. Another aspect of the internal API is the standardized programming
framework, a “libc-like” interface that provides the TA developer with mem-
ory management, secure storage, time, peripheral access and cryptographic
primitives. Due to the emphasis on security, the coverage of the cryptographic
functionality in the internal API is extensive, and features most contemporary
algorithms for public and private key cryptography, symmetric ciphers as well
as digest and signature functions. Optional extensions (standards) to the GP
internal API includes interfaces to smart cards and embedded secure elements
(from within the TEE) [117], APIs by which trusted user interfaces can be setup
and controlled [120, 121], and a socket API for network endpoints [118].

For remote administration of TEEs, two separate specifications exist. Both
are based on the notion that security domains are established on the device in

4https://globalplatform.org/
5https://openenclave.io/

https://globalplatform.org/
https://openenclave.io/

18 CHAPTER 2. HISTORICAL OVERVIEW

a hierarchical fashion, after which the lifecycle of a security domain can be re-
motely managed, and secrets (data) and TA codes can be remotely provisioned
to it. The two variants are the TEE Management Framework (TMF) [115], and
the Open Trust Protocol (OTrP) [208, 116]. The latter is specified both in the
context of the GP consortium [116] and in the context of IETF [208]. Even
though both protocols accomplish the same thing, TMF is better suited to off-
line (or store-and-forward) provisioning, whereas OTrP is explicitly an on-line
protocol.

Another provisioning standard, used for virtually all smart cards with ap-
plication update functionality (including UICC cards) is GP’s Card Specification
standards [110]. These define the card commands by which software can be
provisioned to the smart cards, and how security domains, i.e., keys identify-
ing a certain card context, are managed. The secure communication between
the provisioning entity and the card, as used by the Card Specification stan-
dard, is defined in the GP Secure Channel Protocols [112].

Part II

Mobile Platform Security:
How?

19

Chapter 3

Operating System Security

Operating system (OS) security constitutes the core of software protection in
computing platforms. In terms of security, the OS on a device guarantees code
and data integrity in the presence of potential attacks, and provides isolation
for OS services and applications as well as for system and user data residing
on the device. In this context, we use integrity to mean that the data on or
the operation of a device shall remain in accordance with the expectations of
the device platform provider and the user. As a consequence, unauthorized
or accidental modifications of data or deviation from the intended operational
flow do not happen. By isolating data and/or processing into isolated do-
mains the OS can provide higher levels of integrity protection, in that potential
integrity violations can be contained within a single isolated domain. More
prominently, isolating processing together with its associated data is a foun-
dation for information security. For example, such isolation is used to keep
secret keys inaccessible to all code except for the cryptographic operations that
operate on them. Additional hardware-supported mechanisms like trusted ex-
ecution environments (TEEs) augment the technical means for implementing
confidentiality, access control, authentication, privacy and communication se-
curity. Such features can protect the system against attacks, but also be used
to implement vertical security services (such as payment or user identification
services) needed in computing devices. To achieve device integrity and isola-
tion, trustworthy device boot-up is also crucial, as most isolated environments
are set up as part of it. Integrity and isolation are very much intertwined mech-
anisms in a typical OS.

We can identify two types of protection on a device: user (data) protection
and system protection. System protection features aim to protect the comput-
ing system against accidents or malice. A good example of this is the separa-
tion of privilege, where higher privileged components, such as the OS kernel,
are protected (e.g. via memory protection settings) from modification or data
leakage induced by software applications. The governing principle is that the
system design aims to reach a state of “least privilege”, where each active com-
ponent in the system only is given the processing capability and data access

21

22 CHAPTER 3. OPERATING SYSTEM SECURITY

that are strictly needed for its own operation. If we can reach this idealized
state then the system becomes safe (protected) by design. Data protection fea-
tures, such as user file encryption, primarily aims to protect user data - while
in use, in transit or while in storage. In practice, data protection features rely
on system protection to guarantee their secure operation. But also a reverse
relationship exists: A working system relies on the existence of data such as
configuration or log files, and the data protection of these entities becomes an
inherent part of system protection.

Many of the security mechanisms related to OS protection were invented,
described and implemented in the 1960s. We will introduce them in the form
of a short historical cavalcade, covering integrity, isolation, different forms of
access control, and authentication. In the second part of the chapter we will ex-
plore hardware-assisted run-time protection for the OS kernel. Some other el-
ements of OS hardware-assistance such as cryptographic acceleration for stor-
age protection or key management for device authentication or secure boot are
deferred to later chapters, especially Chapter 4.

3.1 General concepts

3.1.1 Integrity

The term “bug”, dates back to the development of the Mark-II computer at
Harvard in 1947 [194], where a moth trapped in the computer resulted in incor-
rect computations. This was an instance of accidental integrity violation, where
the intent of the computing logic was not met. The concept of integrity was
well understood right from the beginning of computing history, starting from
the introduction of the stored-program computer [259] in which the memory
technologies used often incorporated integrity checksums in hardware simply
because the bit error rate at the time was high enough to cause real problems
without adequate mitigation. Memory integrity can be ensured either by hard-
ware mechanisms or using software techniques like cryptographic hash func-
tions. In the 1970s, hardware mechanisms to validate the integrity of running
programs [99] were introduced in computer systems. But only in the 1990s
did cryptographic hashes start to be deployed [17] to protect against intentional
integrity violations. Today, system integrity validation and enforcement for ex-
ecuting code is often divided into static (off-line) and run-time integrity. The
former guarantees integrity at system or program start-up, based on the code
stored on persistent storage. The latter provides integrity during execution,
based, for example, on measuring snapshots of memory or configuring mem-
ory properties (like making executable code memory non-writable). In prac-
tice, integrity mechanisms need to be rooted in hardware as we will discuss in
Chapter 4.

3.1. GENERAL CONCEPTS 23

Secure Boot Run-time Integrity
(static integrity) (monitoring, anti-exploit)

Device Software

Application,
Process,

Workload

Hardware (trusted computing base for

integrity and device secrets/trust roots)

Operating System

Application,
Process,

Workload

Figure 3.1: (1) Boot time integrity of the OS is achieved statically by securely
booting the platform. Run-time integrity can be used to monitor platform state
as it executes. By leveraging hardware features like memory virtualization, the
securely booted platform can enforce (2) isolation among workload instances
(like applications and processes), as well as (3) isolation between the workloads
and the system. The latter is typically structured using hierarchical privilege
rings where the workloads are isolated from the system whereas the system
does have access to workload memory.

24 CHAPTER 3. OPERATING SYSTEM SECURITY

3.1.2 Isolation

The need to isolate applications arose from the timesharing computers of the
early 1960s. At that time, applications or processes were executed on comput-
ers originating from different users and programmers with no mutual trust—
what was needed was a way to isolate the code and data from different stake-
holders so that software bugs in one workload would not disturb other work-
loads, or that intentional data theft between computer users would not hap-
pen. Already in 1965, Jack Dennis [88] proposed a memory isolation solution
that was ahead of its time. The paper proposes a “protection sphere” for pro-
grams (which includes a piece of software, its data and its run-time state),
and achieves this isolation property using hardware-assisted memory refer-
ence protection, using what we today call a “Memory Protection Unit” (MPU).
Furthermore, the paper identifies which attributes should apply to which types
of memory (e.g., code memory should allow execute privilege, not write)—an
insight that was not realized in consumer devices until about 2015—50 years
later. For completeness, it was always known that isolation can always be
achieved by full device interpretation in software (emulation), but the perfor-
mance of such solutions then (as well as now) have always been inferior to
hardware- assisted isolation.

The concept of privilege levels (also known as rings) was introduced three
years later [129]. The logical difference between memory isolation and hardware-
assisted privilege levels is that operations (code) residing in a higher privileged
ring, has full (or significant) access to memory and resources in the lower priv-
ileged rings, but not vice versa. So in essence the presence of privilege rings
models isolation in one direction. This mechanism allows for an obvious so-
lution for information flow between rings (higher privileged one copies data
from/to the lower one). This is the main protection mechanism used in oper-
ating systems today with respect to to applications running on the platform, as
visible e.g. in Figure 3.1. The integrity protection derives from a trust root, i.e.
data or components using which trust in a system can be bootstrapped. For
example, a manufacturer signature verification key can serve as a trust root for
boot-time integrity. The introduction of hardware support for virtual memory
in the 1980s (in the form of memory management units (MMUs)), in conjunc-
tion with the notion of privilege levels, brought about the main memory isola-
tion paradigm for operating systems: The OS kernel runs at a higher privilege
level, providing isolation between the OS and applications, but allowing for
communication between them and the OS kernel. When context-switching be-
tween applications takes place, the MMU is reconfigured for each scheduled
application, in turn achieving hardware-supported isolation between applica-
tions.

3.1.3 Access control

In the presence of proper isolation mechanisms, the notion of access control is
to stipulate that only authorized entities (such as users) shall have access to

3.1. GENERAL CONCEPTS 25

Access Control

Application,
Process,

Workload

OS

Application,
Process,

Workload

Policy enforcementfilesystem

U
se

r
A

cc
es

s
C

o
n

tr
o

l

Biometric or token-based AC

Figure 3.2: System access control takes place both as user access control and
access control between system components. Users can authenticate themselves
to the system either using system I/O such as the touchscreen (PINs, patterns)
or through access-control hardware such as fingerprint readers. System access
control can be set up between workloads (to provide controlled access through
isolation boundaries) or to selected system resources (e.g. the filesystem). For
both user and system access control, the definition and enforcement of access
control policy within the system plays an important role. The integrity of the
policy itself is also crucial to system security.

26 CHAPTER 3. OPERATING SYSTEM SECURITY

computer resources (such as files). For example, by default data from one
user should not be accessible to other users. At the same time, full isolation
is not desirable, as modular programming systems includes program modules
as well as data storage that should be shared between user workloads with-
out sacrificing data isolation properties. The seminal reference for access con-
trol [160] puts this in context - whereas the original motivation for isolation in
a time-sharing system was “to keep one user’s malice or error from harming
other user”; today the interpretation is that all of the above reasons for protec-
tion are just as strong if the word user is replaced by the word application.

Access control mechanisms are classified into two types: discretionary and
mandatory. A mechanism is discretionary when subjects such as users, and ap-
plications operating on their behalf, can configure access control policies based
at their own discretion. On the other hand, if a central authority (administrator)
decides on a system-wide policy, typically with the intent to protect the sys-
tem itself against malice or error originating from the subjects, then the access
control is mandatory. In mobile phones, mandatory policies often originate
from OS providers or original equipment manufacturers (OEMs). In most de-
vices we also distinguish user access control, where the subject that is granted
access is the user from the case where the subject, in accordance with the in-
sight above, is a software entity, like an application, in a local or remote device.
From a technical perspective, the main difference between the two is how the
subject is identified or authenticated – the identity of a human being is notori-
ously difficult to confirm with high accuracy from within a computer system, a
program subject can be labeled by some universal identifier such as the digest
of the program, the integrity of which can be using device integrity mecha-
nisms in a straight-forward manner. For remote access, we can further rely
on remote attestation primitives to transfer the integrity knowledge between
physically separate devices or computing environments. The solution for all
of these subject identification problems, as well as maintaining the integrity of
device access control policy, often uses of hardware security assistance.

The introduction to access control would not be complete without the model
Butler Lampson defined in his 1974 paper on protection [160]. He introduces
the concept of the access matrix. This is a sparse matrix that lists what access
attributes (say read / write / execute / modify policy) each subject (a row in
the matrix) has for each object (a column). A subject could be a process and an
object a data file. See Figure 3.3 for an illustration.

Based on the matrix, the main problem of defining access control for a com-
puter system is a 3-dimensional:

• Decide how and where in the system is it relevant to perform an access
control check, i.e., where to place the policy enforcement point? For many
mandatory access control schemes, the system call interface (between the
application and the OS kernel) is an appropriate place. For more abstract
application permissions (say granting access to a camera), libraries or OS
daemons maybe more appropriate enforcement points. In microkernel
architectures, parsing inter-task messages for identifying system com-

3.1. GENERAL CONCEPTS 27

Resource 1
(file)

Access Control Matrix

Process 1

Process 2

Process n

Resource 2
(memory)

Resource 3
(device)

Resource M
(process X)

... ...

r/w/x

r r/w/x

w / c

r

r/w

c

r/w

Figure 3.3: The access control matrix defines which access attributes are per-
mitted when a subject (a user, a process, a program), at one row in the matrix
intends to access a resource (system hardware, file, a software service) defined
as one column. In this example, process 2 has only read access to memory
resource 2. The access control matrix is a theoretical construct, and actual ac-
cess control enforcement mechanisms and policy descriptions are optimized
instantiations of the matrix.

28 CHAPTER 3. OPERATING SYSTEM SECURITY

mands to be access controlled can be the right approach.

• Centralise access control decisions into one policy enforcement point, a ref-
erence monitor. Having all the policy in one place makes it easy to config-
ure, update and enforce rules and to possibly accelerate decision making
using caching of earlier decisions. One well-known example of this is the
FLASK architecture [171], which was conceived when the Linux OS was
first equipped with the SELinux mandatory access control system.

• Abstract, minimize, and define a policy system and a language by which
the access control matrix can be configured and defined in a practical
manner. E.g., considering that a mobile phone can have thousands of
subjects accessing up to millions of objects, it is not realistic to config-
ure policy for every pair of subject and object separately. Over the years
many systems have been deployed to implement this abstraction. Access
Control Lists define for each object which subjects can access it, with the
assumption that if a subject is not listed, access is not granted. The op-
posite, a permission, defines with each subject what objects (or services) it
has access to. A capability is similar to a permission, but can be passed
around (or delegated) between subjects. Different forms of level-based
architectures define security levels for subjects and objects and decide
access right based on the relative levels configured for a subject-object
pair. Domain-Type-architectures minimize the matrix by clustering sub-
jects and objects together based on how similar their access rights are to
one another. Like these examples show, the variation in policy mecha-
nisms is huge, and furthermore, different policy languages can then be ap-
plied for all of them to describe the policy in some, often human-readable,
form.

Access control mechanisms of contemporary mobile devices constitute a
hardware-supported set of mechanisms that integrates user access control with
the access control needed for granting permissions while isolating system- and
3rd-party workloads on the the device. Now we will look at the commonalities
of the mechanisms used in mobile OSs today, with particular emphasis how
these are supported by, or guard access to, hardware security mechanisms. An
overview of access control principles in end-user devices can be found in [226].

On Android, the highest-level access control mechanism, used primarily by
3rd-party and system applications, are the Android permissions [123]. Permis-
sions are lists of rights associated with an application. The (requested) per-
missions are listed in the application package metadata, but are granted based
on a variety of rules explained below. The permissions are enforced during
run-time, and relate to service access beyond the default application sandbox.
Examples include network access, storage access and accesses to physical sen-
sors and events such as location, acceleration or microphone / loudspeaker.

The approach to granting permissions has evolved over the lifetime of mo-
bile OSs, starting with Symbian 9 capabilities, and today visible in Android

3.1. GENERAL CONCEPTS 29

and the Apple iOS operating system (iOS). Permission granting and the gran-
ularity of permissions needs to balance user understanding and ease-of use
against achieved level of security and privacy. Earlier systems distinguished
between user-granted permissions and signed system permissions. The first
set was originally presented to the user at application installation time, and
required acceptance in order for the application to be installed. The system
permissions set has always been under the control of the OEM or ecosystem
provider—these provide access to system features whose acceptance is not un-
der the discretion of the device user, and therefore require an associated cryp-
tographic signature by a trust root in order to be activated for the installed
application. A typical example of such a permission might include the right
for the installed application or service to function as an (extended) installer for
other applications.

User permissions in Android 10 and iOS 13 are divided into install-time
permissions and run-time permissions. While install-time permissions can
be reviewed and accepted at install-time, run-time permissions are requested
(from the user) in situ, when the application is running and attempts the op-
eration requiring permission. This mode of operation intends to help the user
contextualize the request, as the dialog is shown specifically when it is needed.
When displayed, the user may choose to grant the permission to the applica-
tion permanently, or every time the permission is needed. The user can later
change the set of permissions granted to the application via centralized appli-
cation management.

The latest version of iOS can also distinguish permission usage based on
whether the application is currently used (in the foreground) or all the time.
Furthermore, to protect users’ privacy, the OS has the ability to audit and po-
tentially raise an alarm to the user if hidden or background applications ex-
cessively exercise a permission such as location access. Today both dominant
mobile operating systems carry a total of 100–200 permissions that can be set
and operated on by the user, the application developer and the OEM. It is likely
that the current approaches strike the right balance between the complexity of
the permission granting process and the security and privacy guarantees pro-
vided by permissions.

The next level of access control in the mobile OSs happens at the level of
process interaction with the kernel, as part of kernel system calls. Some of the
permission checks discussed above may be enforced at this level, but more to
the point, this is the level where the sandboxing of 3rd-party applications takes
place – to isolate these from each other, but also to control the privileges of
such sandboxed applications with respect to system daemons, driver frontends
and other system-critical functions implemented as high-privileged user-space
programs. For iOS, the sandboxing protection is implemented on top of the
TrustedBSD framework [260]. TrustedBSD is a kernel framework that allows
for policy modules to be hooked into the kernel, i.e. kernel system calls are
augmented to accept access control decisions from the policy module, which
also can account for subject identification such as process labels (applications).
In some cases the policy framework can also invoke user daemons to collect

30 CHAPTER 3. OPERATING SYSTEM SECURITY

extra information for access control decisions. The iOS policies [58] are writ-
ten in tinyLISP: some 100+ mandatory access control enforcement points in the
iOSsystem calls make up the (container) isolation framework for the applica-
tion sandbox and potential exceptions for e.g. system daemons.

Android has a similar mandatory access control enforcement mechanism.
It is built on a similar hook-based mechanism as with TrustedBSD, called Linux
Security Modules (LSM) [191]. The selected policy engine for Android is SE-
Android, a Domain-Type policy enforcement mechanism inherited from the
SELinux project [241][128]. The Android Linux kernel imports the system pol-
icy at boot—it is loaded from the system ramdisk which in turn is covered by
the secure boot of the mobile device. The policy is transcribed from a set of
M4 macros via a SELinux policy language into binary representation entered
to and used in the kernel engine. Policy can also be applied to the filesystem
metadata and to application-side callbacks, just like with iOS. In Android, part
of the policy originates from the OS provider (Google), and part from the OEM,
the latter providing policy for accessing OEM-specific hardware.

3.1.4 User authentication

User authentication refers to the process of identifying followed by verifying
the identity of the user of the system. Often, the mobile device is considered
to be personal, i.e. the identification step is implicit. Authentication tradition-
ally consists of the users entering passwords, PINs or graphical patterns to
prove their identities. The mechanism needs to be able to securely distinguish
correct authentication attempts from wrong ones. Typically the access control
framework as a whole also incorporates related aspects like elements of inac-
tivity control, forcing re-authentication after a period of inactivity, and man-
aging multi-factor authentication. On the other hand, system protection, such
as extending the inter-authentication attempt interval, is also needed in the oc-
currence of too many failed login attempts. Depending on policy, it may also
result in wiping local data or requiring additional (more secure) authentication
in case of repeated authentication failure. In recent devices, the access con-
trol system also orchestrates file decryption ability, i.e. access to cryptographic
key material for proper device operation may be limited when a device is in a
locked state.Underlying hardware support for secure storage can facilitate the
implementation of all of these different policy variants.

Proof of identity submitted by the user can be broadly categorized as 1)
“Something the user knows” such as PINs, 2) “Something the user has” e.g
an external NFC authentication token or 3) “Something user can be character-
ized by”, e.g. a biometric fingerprint. Biometric authentication has become the
dominant authentication mechanism in mobile devices, driven by ease-of-use
considerations. This has resulted in changes to the hardware security mecha-
nisms appearing in mobile devices.

Fingerprint sensing is one such biometric authentication mechanism. Three
fingerprint sensing technologies are popular: optical, capacitive and ultrasound.
An optical scanner can be considered to take picture of the fingertip, and the

3.1. GENERAL CONCEPTS 31

print pattern is then processed into an identification code. A capacitive scanner
measures electrical signals sent from the finger to the scanner, thereby mapping
out contact points between lines, ridges, valleys and air gaps in the fingerprint.
Today, capacitive scanning is dominant. Ultrasonic scanning sensors, deployed
in some high-end mobile phones, augments the capacitive technology by sens-
ing the 3D profile (depth) of the print’s ridges and valleys which in in theory
should result in higher accuracy. For non-optical sensors, the accuracy of sen-
sors deployed in phones is more than 98% per finger for a false positive rate of
0.01.

Facial recognition systems are the latest addition to user authentication
with mobile devices. Facial recognition is achieved by extracting facial fea-
tures from a potentially augmented camera image. Features can include dis-
tances between eyes, lips and nose, as well as a 3D map of the face. The iPhone
FaceID unlocking mechanism uses 30,000 infrared dots [16] to create an ap-
proximate 3D map of the user’s facial features. Facial template matching is
conceptually similar to fingerprint matching, and shares similar concerns: An
important platform challenge related to all biometric authentication such as
fingerprints or facial recognition is how to keep the reference template private
(secure) and strictly local to the device. Neither Android nor iOS backs up
templates onto cloud servers. Furthermore, template matching happens inside
a TEE, equipped with secure storage where the template is stored. An impor-
tant consideration is how data from the biometric sensor is channeled from the
sensor to the matching operation in the TEE, so that no obvious locations for
harvesting attacks are present on the system. Finally, life-cycle processes must
assure the deletion of old biometric templates should the device be re-sold or
scrapped.

In recent mobile devices, context-based user authentication decisions aug-
ment the above mechanisms, or potentially the selection of which authentica-
tion mechanisms are required for access in different usage scenarios. For exam-
ple, Android SmartLock implements such an architecture, deployed by OEMs
such as Samsung and Sony [184]. Context used for access control decisions
can include geographical information, Bluetooth and WiFi access points in the
vicinity, temperature, light sensor readings and even weak authentication in-
put such as user gait (measured via accelerators) and touch-screen typing pat-
terns . Machine learning can also be leveraged: “Familiar” patterns regarding
the user’s context can be recorded and taught to the machine learning model,
which is then be used to augment access control decisions, typically allowing
for better usability in case context familiarity is high [186][146].

3.1.5 Software authentication

Although mobile devices opened up to allow third-party software in the 1990s,
installation of third party applications was initially constrained due to business
reasons as well as security reasons (protection against malware). Over time, the
secure installation of applications has come to follow a certain pattern:

32 CHAPTER 3. OPERATING SYSTEM SECURITY

• Signed application packages: The application software is a package con-
taining a mix of executable binary code, code for various runtimes such as
Java, libraries, graphical elements such as icons as well as program data.
The packages are put together, and typically, digitally signed by the ap-
plication software developers using their signing keys. The mechanisms,
and sometimes the infrastructure, needed for application signing are de-
fined and managed by the OS/ecosystem provider. The package also lists
the expected permissions, e.g., the access to platform services needed by
the program when it is eventually installed on a device.

• Publishing software via application stores: The developer submits the
package to a centralized store, often operated by the ecosystem provider.
The store is not only a software repository, but also an active part of se-
curing the device platforms. On submission, the software package can be
validated for its functionality. The application can be analyzed manually
or with machine learning methods to ensure that it is benign, e.g., that it
does not over-consume resources or masquerade as some other software.
Virus scanning can be performed on it to weed out unintentional vulner-
abilities or intentionally malicious behavior. The store may also contest
some of the requested permissions, if they violate some business or other
constraint, e.g., an application requesting the the following combination
of permissions—networking, microphone, and loudspeaker access—will
allow it to serve as an endpoint in a voice communication channel; histor-
ically, this has not always been allowed in all device ecosystems. When
all its checks are successfully completed, the store publishes the applica-
tion for download to mobile devices.

• Restricting installation sources: The store identity is an integral trust
root assigned and configured in device software at manufacturing. By de-
fault, application download is restricted to the stores decided by the man-
ufacturer, although some devices do allow the user to add new trusted
stores, which is a very similar or the same operation needed when config-
uring an enterprise device-management server in the device, or to sideload
applications by installing them locally without going via a store. When
stores do adequate checking on submitted application packages, and de-
vices exclusively use authorized stores, the resulting security benefit has
proven to be substantial. For example, in Europe and North America the
problem of fake applications or malware in application stores is virtually
non-existent.

• On-device validation of application packages: When an application pack-
age is downloaded onto a device, over an authenticated connection to the
application store, local application installation happens. Again, a public
key infrastructure (PKI) is leveraged for package authentication, but the
root of this PKI varies among ecosystems. The application may be veri-
fied using a certificate chain up to the ecosystem provider, starting with
the developer signature, or in some cases the store may countersign the

3.1. GENERAL CONCEPTS 33

package. The chain may also consist of a single element, the developer
signature, e.g. Android deploys a solution called same origin policy where
the first installation of an application can be from any source (developer),
but application upgrades are then enforced to originate from the same
source. Depending on the ecosystem, the local installation is done into
some form of sandbox, i.e. by default a third-party application does not
get full system access. It should be well-isolated from other application
running on the device, but also from the system based on the permissions
applied for it by the developer, granted by the store, and potentially fur-
ther approved by the device user at installation or at application usage
time. An important part of this sandboxing is the part of the filesystem
available to the application, which is often severely restricted. Also, as
part of the installation, some of the metadata related to the application
such as application name, trust roots, permissions, inter-process commu-
nication intent or the system events the application is supposed to react
to are as a rule added to some form of local registry for later application
management in the device.

• Over-the-Air Device Management: Although more prevalent in enter-
prise settings, the application store can also incorporate some over-the-air
device management. The store may remember downloads by individual
mobile devices, and orchestrate the updating of the software when new
versions are provided by the developer, this is especially relevant for pro-
grams that are purchased (i.e. not free of charge) Also if security problems
are later found with a program, the device management system can warn
the device and its user, or even forcibly remove the offending application.

The details available related to application installation security and the ways
e.g. the PKI is set up for specific ecosystems vary across OSs and ecosystems.
The principles above have remained constant for mobile OSs since Symbian 9,
including the currently prevalent Android and iOS. To a large extent the prin-
ciples also carry over to home appliances with app support such as SmartTVs.
A common property of secure application installation is that it does require
that the trust root of the store is configured in the device at manufacture and
potentially also the PKI trust roots related to application signing.

3.1.6 Storage protection

For data-at-rest protection in mobile OSs, two requirements intersect: The first
is integrity – ensuring that modifications to applications as well as system code
and data cannot be undetectably modified, even when the device is powered
off, The second is confidentiality, especially of user data. The architectures for
file (system) protection includes Android DMVerity [124] that is applied to the
system partition since Android 7. Android boots with the Linux kernel and the
initial RAMDisk protected by secure boot integrity measurements. The data in
the kernel configuration and RAMDisk is therefore in the trusted computing

34 CHAPTER 3. OPERATING SYSTEM SECURITY

base (TCB), and can include trust roots for further operations. The DMver-
ity block-based file-system integrity mechanisms leverage this fact. The file
system is concatenated with a hash tree, representing the blocks in the read-
only system partition. The root of the hash tree is further bound to the ker-
nel/RAMDisk. Using a hash tree for block verification contributes to boot-up
efficiency, by allowing the filesystem integrity to be validated on individual
block loads, rather than all at once. The same principle is extended to a file-
based variant called FSVerity [125], a Linux kernel file system plugin, that im-
plements the same structure for a single file. In this case, the hash root is man-
aged separately, e.g. by managing it within a certificate, as is done in Android
10 and later. FSVerity is a block-based mechanism to achieve integrity for a file
residing in an otherwise read/write system, and by being block-based (with
the hash tree validation) on-demand paging is trivially supported. In Android,
FSVerity can be used by system and third-party application packages alike, and
allows e.g. for application updates where a new system application overrides
the default one in the read-only filesystem (without sacrificing integrity). In
iOS, the root filesystem is also mounted read-only.

For user file-system confidentiality, potentially the most potent protection
regime is the “Data Protection” mechanism of Apple iOS [10]. This mechanism
can even protect individual parts of large files (as supported by Apple’s APFS
file system) with different keys, but even without this extension, the file protec-
tion (implemented using AES-XTS-128 encryption mode), works in a file-based
manner as follows: On read or write, the kernel identifies the file, and reports
this identity to the isolated Secure Enclave Processor. The SEP manages and
derives key material for the file in question, and configures the key material
(diversifier and key) directly to the hardware accelerator for encrypting or de-
crypting the data. In this operational pattern, file keys are never exposed to any
part of the OS kernel, and therefore not vulnerable to leakage [42]. Contem-
porary Android devices also follow a file-based encryption pattern (Android
FBE). The way to handle key management varies across OEMs. E.g. Google
pixel devices [127] manage the file-specific keys in the Linux kernel key-ring,
but leverage a hardware accelerator to encrypt/decrypt. Samsung and Huawei
devices also use hardware acceleration for encryption. Specific to Android FBE
are the two protection modes related to the status of user authentication in the
phone. Data by applications can be protected by Credential Encryption (CE),
whereby the file keys are available only on successful device unlock, i.e. access
to such files is dependent on the user authentication status (when the device
is locked, access to files is not possible). The alternative is device encrypted
(DE) data, which is available also without device lock, and allows applications
to function early at boot on in the background (when the device is locked).
Block-based filesystem encryption (protecting all reads and writes to flash, for
a filesystem, with a single key per filesystem) was used in the past in mobile
phones, but is not in widespread use any more. Samsung Knox devices [225]
include the Dual-Data-at-Rest solution, which provides double encryption for
selected files, the main use being that the OS can arrange the second level of
protection to be outsourced to a plugged-in (separate) encryption module, pro-

3.2. RUN-TIME HARDWARE ASSISTANCE 35

viding e.g. government-certified encryption as an option.

3.2 Run-time Hardware assistance

In legacy mobile devices, additional hardware-assisted protection has been
added to protect the OS, and especially its kernel. Apple has deployed Ker-
nel Integrity Protection from the time the Apple A11 processor was launched.
This is a hardware-assisted processor feature that protects the kernel as a com-
bination of two separate operations. First, the memory controller is augmented
with a feature than can write-lock physical memory regions after boot, not al-
lowing unlocking until reboot. Second, the MMU does not allow re-mapping
this memory to outside the protected region and conversely, mapping any
other writable memory into the virtual memory of the kernel memory region.
In combination, these two hardware augmentations allow the device kernel
code to be configured as immutable during run-time, effectively protecting
against rootkits at this level of operation.

In Android devices, especially those manufactured by Samsung and Huawei,
also offer similar features for kernel memory protection, although implemented
using standard privilege level isolation rather than with legacy hardware ex-
tensions. The ARMvA8 architecture supports two levels of virtual memory
page tables, and the ability to control the lower level page translation from
inside the hypervisor privilege level (the so-called EL2) allows the protection
to be constructed, such as having the Linux kernel code trap to the hypervi-
sor code for kernel memory management. This way, some parts of the virtual
memory configuration for the kernel can be outsourced to EL2, and thereby
protected by policy. The hypervisor can enforce e.g. kernel code write-protection,
double-mapping protection, as well as some data protection for system regis-
ters contents, read-only data and security protection for critical process (cre-
dential) parameters in task structures. As outlined in Chapter 7, attack miti-
gations for return-oriented programming (ROP) and jump-oriented program-
ming (JOP) such as call-flow integrity can also be further hardened with these
mechanisms. Samsung uses the brand name ‘Real-time Kernel Protection’ (RKP)
for the collection of the features [224], whereas Huawei calls its corresponding
set of features ‘Huawei Kernel Integrity Protection’ (HKIP) [139].

Both Samsung and Huawei complement kernel memory protection (and
secure boot) with run-time attestation, that extends beyond measuring kernel
data into system services, including user-mode processes. Huawei’s Extended
Integrity Measurement Architecture is a framework for measuring and report-
ing on code and data in a way where some of the static measurements are
stored and reported from the TEE. Samsung’s Periodic Kernel measurement
(PKM) measures kernel data like like SELinux kernel polices, and complements
its TrustZone-based Integrity Measurement Architecture (TIMA) depicted in
Figure 3.4—a framework capable of locally attesting system firmware, and fur-
thermore based on these metrics allow or disallow e.g. user access to system
keys available in the TEE [39].

36 CHAPTER 3. OPERATING SYSTEM SECURITY

Rich Execution Environment Trusted Execution Environment

PKM

REE Operating System

Sensitive data

Periodic
Check

RKP

Sensitive
operation

Figure 3.4: TIMA’s kernel integrity protection mechanisms. Periodic Kernel
Measurement (PKM) periodically inspects the code and critical data of the ker-
nel to ensure that it has not been modified. Real-time Kernel Protection (RKP)
intercepts attempts by the kernel to access sensitive data, preventing integrity
violations in the first place.

Furthermore Apple A11 and later processors contain a hardware feature by
which memory write permissions can be quickly eliminated from application
memory pages without requiring kernel-assisted MMU configuration (saving
the overhead of a system call and a page-walk). This feature is useful for self-
modifying code, e.g. for just-in-time compilers, where executable code is first
written, but then ideally executed without memory write permission.

3.3 Conclusions

In this chapter we reviewed OS security with a focus on how isolation, integrity
and access control is arranged for in mobile phones today. Figure 3.5 summa-
rizes this in a single figure, but also indicates the presence of such hardware-
assisted support that is fundamental enough to merit its own discussion in
later chapters. Beyond run-time integrity and file system protection which
was considered as part of OS security, Chapter 4 provides a separate discus-
sion on boot integrity, which for the most part is the trust root on which OS se-
curity either stands or falls. The hardware-assisted isolation mechanisms and
co-processors discussed in Chapter 5 allow for significantly improved control
(and protection) of workloads running at different security levels. Especially
integrity validation during secure boot relies heavily on hardware-accelerated
cryptography, outlined in Chapter 6. Finally, the run-time protection mecha-
nisms introduced in Chapter 7 are an increasingly essential element in the on-

3.3. CONCLUSIONS 37

going fight against vulnerabilities at all levels of the software stack (including
the OS kernel).

38 CHAPTER 3. OPERATING SYSTEM SECURITY

Platform Security

OS

Application,
Process,

Workload

Policy enforcementfilesystem

U
se

r
A

cc
es

s
C

o
n

tr
o

l

Biometric or
token-based AC

Run-time
protection

A
p

p
lic

at
io

n
 2 Secure

Installer

AppStoreApp. Developer

Secure Boot support (CPUs)

File(system) encr.

Isolation boundary

Is
o

la
ti

o
n

b
o

u
n

d
ar

y

Flash controllers with
encryption support

RBPM (flash)

Isolated
domains
(TEE)

Figure 3.5: Platform Security in context: The OS kernel serves as an orches-
trator of security mechanisms in the platform - it upholds memory isolation
barriers / boundaries between services and applications and also between
user space components and itself. The access control mechanism is in con-
temporary mobile OSs rooted in kernel access control, even though user space
components take part in permission control and user authentication. Filesys-
tem and storage protection is also at large an OS kernel operated activity.
However, secure kernel operation relies on hardware support for isolation
(TEE), trust roots, accelerators for cryptographic operation and secure boot,
for rollback-protection (RPMB) and for user authentication (like finger-print
sensors). These components are presented in Chapters 4-6.

Chapter 4

Platform integrity

All of the security features that we describe rely on a correct platform config-
uration to achieve practically useful results. The platform must boot into the
correct operating system (OS) and execute the correct applications. Further-
more, it is not enough to configure the platform correctly. The system must be
designed to facilitate remote attestation.

In this chapter, we explore the two phases required for ensuring platform
integrity: the supply chain and the boot process.

4.1 Supply chain security

Supply chain security refers to the process of securing the integrity—and some-
times confidentiality—of the software components provisioned to a device, as
well as the device hardware itself.

4.1.1 Provisioning

Mobile devices hold various types of immutable data that correspond to device
identity, device secrets, keys, and certificates. This data plays an important role
in the platform’s security needs such as boot integrity, attestation, identity-
proving, and software version control. Devices can only be fully-functional
when all needed parameters are provisioned.

Provisioning is a challenging process whose design must take into account
many factors: the sensitivity of the data, secure data management over the
lifespan of the device, and the fact that multiple entities may be responsible for
different parts of the data being provisioned (e.g. system on chip (SoC) ven-
dors, original equipment manufacturers (OEMs), and platform providers) [90].
Provisioning happens at various stages throughout the device’s life-cycle, such
as during SoC design, SoC manufacturing, device manufacturing, and when
the device is repaired or refurbished.

39

40 CHAPTER 4. PLATFORM INTEGRITY

Security-critical data must be provisioned in a controlled environment into
persistent storage media such as read-only memory (ROM), fuse or flash mem-
ories. Throughout the provisioning process, manufacturers must take ade-
quate protective measures to ensure the integrity of the data being provisioned,
and to limit access to unprovisioned devices to only trusted entities. The stor-
age type depends primarily on the device’s security profile; in mobile devices
this data can be provisioned into a read-only flash section or into an on-chip
one-time programmable (OTP) memory, but where such storage is unavailable
or must be user-replaceable, a dedicated secure element such as a subscriber
identity module (SIM) or Trusted Platform Module (TPM) may be used. [95]

The provisioning process for mobile devices starts during the SoC design
process, when the contents of ROMs are determined, and continues through-
out the manufacturing process. In addition to ROMs whose data is incorpo-
rated directly into the SoC design, SoC vendors provision the chip with com-
mon configuration data such as the chip revision, model, and manufacturing
series, and characterization parameters for hardware blocks such as true ran-
dom number generators (TRNGs). Commercial SoCs are further provisioned
with a security-hardened configuration that disables debug ports and or the
ability to override processes like secure boot, and enables code encryption and
rollback-protection mechanisms. SoC vendors provide their customers (nor-
mally OEMs) with a set of tools and utilities that can be used to further provi-
sion the SoC.

In some cases, such as with Apple devices, the same entity is responsible
for the SoC, the OS, and the application ecosystem, which allows for a highly
integrated provisioning process. In other cases, the SoC vendor’s provisioning
process is followed by the OEM’s provisioning of device-level configuration.
For example, an ARM-based device using ARM Trusted Firmware [33] would
be provisioned with some or all of the following:

• Hardware Unique Key (HUK) (a.k.a. Device Root Key): An immutable
key, unique to the device, acting as a root-of-trust (RoT) and the base for
other derived device-bound keys used for attestation, device encryption,
and secure storage. Access to the HUK is limited to code running in the
trusted execution environment (TEE). As the key is specific to the de-
vice and accessible only to trusted software, data encrypted with a HUK-
derived key is cryptographically bound to the device, in the sense that
copying the data to another device will prevent it from being decrypted.

• RoT public key: An immutable asymmetric public key, or a hash of a
public key, that is used to verify the authenticity of the first code run by
the device. The authentication key is normally either an Rivest-Shamir-
Adleman (RSA) or elliptic-curve cryptography (ECC) public key and is
referred to as the RoT public key. This is used to verify the first-stage
bootloader. Depending on the device security model, the OEMs may pro-
vision it with several hashes, allowing for separate RoTs where different
parts of a platform are implemented by more than one developer.

4.1. SUPPLY CHAIN SECURITY 41

• Attestation keys: Certified key pairs used to demonstrate that a state-
ment or message originated from a particular device. Devices are provi-
sioned with a set of asymmetric key pairs as part of the manufacturing
process. These keys are used for 1) platform attestation, to prove the
trustworthiness of a device to remote verifying parties, and 2) key at-
testation, to prove the characteristics of a TEE-generated cryptographic
key. One example of key attestation is the ability of Android devices to
make security claims about key generation and storage environments.
For example, an Android device can attest that a key was generated
inside a TEE and cannot be exported from the TEE, or that a key can
only be used after biometric authentication. These claims can be trusted,
because Google, before certifying a manufacturer’s attestation keys us-
ing the Google Hardware Attestation Root certificate1, verifies the de-
vice’s attestation functionality as part of the compliance checks made on
devices that are to be approved for the use of Google Mobile Services
(GMS).

• Device identity information: Device specific information such as device
ID, model, international mobile equipment identifier (IMEI) etc., that is
used to provide a unique and immutable device identity.

At least some of these keys are needed for compliance with standards, such
as ARM’s Trusted Base System Architecture (TBSA) [20]. To be ARM-TBSA-
compliant, ARM Cortex-M devices must be programmed with at least a HUK
for data confidentiality, and an authentication key for the firmware. Optional
platform keys such as attestation and firmware-decryption keys can be derived
from these two keys [32]. In addition to the above, OEMs program additional
keys and certificates to support third party trusted services such as digital
rights management (DRM). The service providers’ certificates are stored in non
volatile flash memory and protected using either the HUK or one of its derived
keys.

4.1.2 Roots of trust

In mobile platforms, RoT requirements are standardised by GlobalPlatform [111].
Originally standardized by the Trusted Computing Group (TCG) in the con-
text of TPM-based systems, the root of trust for measurement (RTM) is an im-
mutable piece of code that runs before anything else on the device, ensuring
that the correct code is subsequently loaded and executed.

Since then, a well-established taxonomy [78, 111] has been developed around
RoTs to describe the system properties ensured by the RoT on which the secu-
rity of a TEE is built, and to allow the relative levels of security of RoTs to be
evaluated during security certification.

1https://developer.android.com/training/articles/security-key-attestation#root
_certificate

https://developer.android.com/training/articles/security-key-attestation#root_certificate
https://developer.android.com/training/articles/security-key-attestation#root_certificate

42 CHAPTER 4. PLATFORM INTEGRITY

4.1.3 Signing infrastructure

Software updates are digitally signed before they are packaged by the OEM to
be installed on a device in the field. Device security hinges on the secrecy of
the signing keys used to sign the device images. OEMs must take adequate
measures to control access to signing keys corresponding to the device roots of
trust, as the RoT is kept in devices’ immutable storage and cannot be revoked.

Software updates are accompanied by a chain of X.509 certificates, digital
signatures, and a manifest containing package metadata. Rather than includ-
ing this data in a separate manifest, this metadata can be included in each pro-
gram binary as an Executable Linkable Format (ELF) segment [89].

Depending on the OEM’s software update process and device security model,
this metadata can include any or all of the following: 1) cryptographic hashes
of independently updateable images, 2) software version numbers, 3) the de-
vices (hardware IDs) for which the images are targeted, and 4) version num-
bers used to prevent software version rollback. A digital signature may be
computed over the contents of just the image metadata rather than the entire
image, to facilitate verification in memory-constrained environments. OEMs
can also encrypt the manifest with a pre-shared encryption key in order to pre-
serve the confidentiality of their software updates.

The manifest, in whatever form, must contain the following elements for
each image contained in the update package:

• Image metadata: Image version number, rollback protection information,
image size, hash values, and cryptographic parameters used for verifica-
tion [33].

• Target device information: Device, batch or product information for
which the software update is targeted. If manifest files are used, this
can also contain versioning information of the manifest file.

A manifest might include other parameters in order to aid update selection,
so that a single package can be used to place devices into a wide variety of
configurations.

The software update mechanism verifies the authenticity of the package by
using the supplied certificate chain to ensure that the public key used to verify
the package signatures can be linked back to the RoT, which is often a hash of
the public key contained in the root of the certificate chain. Having securely
identified the public key needed to verify the authenticity of the package, the
update mechanism must ensure that a signature covers the entire contents of
the package, including any configuration data, version information, software,
firmware, and initialization scripts. OEMs often use multiple signing keys,
each of which is used to sign data used in a different stage of boot process. It
is common practice to use different signing keys to sign normal and security-
critical software, with the highest-security and least-convenient processes be-
ing reserved for the most critical software. This is particularly useful when
software components originate from different vendors, each of which can only

4.1. SUPPLY CHAIN SECURITY 43

sign the component for which they are responsible. Security-sensitive modules
such as secure OSs and critical firmware may be required to be signed by both
the software vendor and the OEM itself to ensure the updates are approved by
both.

4.1.4 Software updates

The two dominant platforms in the mobile ecosystem, iOS and Android, dif-
fer significantly in the way their devices are updated. Apple has a vertically
integrated ecosystem, giving them full control of the software update process
for the entire device. Android devices, on the other hand, have multiple soft-
ware providers, each with their own testing infrastructure and quality norms:
Google provides the Android platform, OEMs and carriers customize the plat-
form with their own software, and other developers provide applications. Ap-
ple’s tight control on the update process provides an advantage when respond-
ing to zero-day attacks, as they can immediately deploy patched software to all
devices. In comparison, the number of developers responsible for Android de-
vices means that the software update process for Android devices is relatively
slow and requires significant coordination amongst the developers involved.

This dependence on OEMs to re-customize and deploy updates has led to
longer response times to security issues, resulting in a greater number of vul-
nerable devices. In order to mitigate this, newer versions of Android decouple
the base Android system from OEM customizations, reducing the time and
effort needed for OEMs to roll out updates2.

Software updates for mobile devices are rolled out through an over-the-air
(OTA) update process involving client and server infrastructure. The software
update procedure is initiated by the device and may consist of the following
stages:

• Downloading: Devices regularly poll the OTA update servers, and when
a new update is available, the device downloads a signed update pack-
age.

• Verification: The integrity of the update package is verified using the
mechanisms discussed in Section 4.1.3.

• Installation: The new software is installed to the device.

• Postprocessing: After successful installation, the update is configured.

In the case of Android devices, OEMs can use either Google’s OTA update
infrastructure or their own servers to distribute system updates. As well as
avoiding the need to run their own update servers, OEMs using Google’s OTA
update infrastructure avoid the need to provide their own update client3.

2https://www.androidauthority.com/project-treble-818225/
3https://source.android.com/devices/tech/ota/ab

https://www.androidauthority.com/project-treble-818225/
https://source.android.com/devices/tech/ota/ab

44 CHAPTER 4. PLATFORM INTEGRITY

To facilitate the installation of system updates, most mobile devices include
two separate partitions. At any time, one is marked as active and one as idle.
The active partition holds the currently-running software, and updates are in-
stalled to the idle partition. Then, the idle partition is marked as active, and
the active partition as idle. This ensures that a working copy is available as
a fallback if the software update fails or the device fails to complete the boot
process after an update. In the event of boot failure, the device can instead boot
from the old known-good partition.

4.2 Boot integrity

It is not enough to download and install only valid updates to a device: the
device must ensure the authenticity of the software being executed, so that an
attacker cannot execute malicious code by bypassing the update mechanism
using a software vulnerability or physical access.

Secure boot and authenticated boot [207] mechanisms ensure the integrity of
the boot process, detecting attempts to boot an altered system image. Secure
boot and authenticated boot are standard features in modern PCs [205] and
mobile platforms [35], although their architectural realizations can differ sig-
nificantly.

4.2.1 Secure boot

In secure boot, each step in the boot process verifies the authenticity of the next
software component in the boot chain, before it is launched. The system RoT is
used to verify the authenticity of the first software component. Consequently,
software images must be signed by the manufacturer before being deployed
on the device.

4.2.2 Authenticated boot

In authenticated boot, each step of the boot process is measured, e.g., by com-
puting a cryptographic hash over the platform configuration information and
the subsequently-executed software component. Unlike with secure boot, the
resulting measurement is not used to decide whether the component can be
executed, but only stored securely for later retrieval.

Authenticated boot permits any software to run on the device. This means
that any software may attempt to access secret keys or other sensitive resources,
but the securely stored measurements can be used for access control, so that ac-
cess to sensitive resources is only possible after an appropriate boot sequence.
Moreover, the measurements can be used for other purposes than access con-
trol, such as producing a signed statement of the system’s state that can be used
to attest the state of the system to a remote verifier.

Authenticated boot provides greater flexibility for multi-function devices,
since users can execute arbitrary code, so long as it does not perform sensitive

4.2. BOOT INTEGRITY 45

operations. This flexibility comes at the cost of additional complexity, since
access control checks must be added to all sensitive operations.

4.2.3 Rollback Protection

Signing of software prevents unauthorized software from being installed onto
a device. But once software has been signed, it cannot be “un-signed”, and
some other mechanism is needed to prevent legitimate but vulnerable software
from being installed and exploited by an attacker. Since mobile devices need to
verify the authenticity of software without access to the internet or correct time,
solutions developed for web cryptography, such as Online Certificate Status
Protocol (OCSP) [227], cannot solve the problem. Instead, mobile devices use
rollback protection to ensure that old, vulnerable versions of their software
cannot be reinstalled by an attacker4.

Rollback-protection counters

Rollback protection is implemented by using a designated region of secure
storage to keep track of the minimum software version that the device is per-
mitted to boot.

Updating the version information for device bootloaders, firmware and the
OS is done as part of secure boot process, often by the bootloader. Rollback
counters are incremented when the device boots a version of the software is
with a higher version number than the current value of the counter, after the
software has already been used successfully. In practice, this means that the
first time a new software version is used, it will mark the image as ‘success-
fully used’, but not update the counter. The second time the updated image
is been booted, the rollback counter will be updated with the version num-
ber of the new image. This is needed so that if a new version of the software
does not work then it will not update the rollback counter and thereby render
the device unusable. OEMs can increase the version number whenever they
release a software update addressing a security vulnerability. As each compo-
nent is loaded, the rollback-protection counter is checked against the version
to be executed; if the component is older than the current value of the rollback-
protection counter then its validation fails. The result is that once a vulnerabil-
ity has been patched, an attacker cannot reintroduce it by reinstalling vulnera-
ble software.

Modern day mobile devices execute a multi-stage boot process with many
different components. Each of these stages has its own rollback-protection
counter, allowing OEMs to independently update each component while still
protecting against rollback attacks5.

4https://source.android.com/security/verifiedboot/verified-boot#rollback-
protection

5https://developer.trustedfirmware.org/w/tf_m/design/trusted_boot/rollback_pr
otection

https://source.android.com/security/verifiedboot/verified-boot#rollback-protection
https://source.android.com/security/verifiedboot/verified-boot#rollback-protection
https://developer.trustedfirmware.org/w/tf_m/design/trusted_boot/rollback_protection
https://developer.trustedfirmware.org/w/tf_m/design/trusted_boot/rollback_protection

46 CHAPTER 4. PLATFORM INTEGRITY

Google added rollback protection to Android 8 and made this mandatory
for devices from Android 9 onward. Android Verified Boot does the rollback
verification checks using the version information in the verified boot meta-
data6, and prevents the device from booting if downgraded firmware is de-
tected 7.

Apple takes a slightly different approach, using an online signing server to
provide rollback protection for iOS and iPad devices. Rather than containing a
simple version number, the anti-rollback memory contains a random value that
is sent to Apple when requesting an update. The OTA update server signs the
update along with the anti-rollback value and the device’s unique identifier.
The result is that if a software update package is successfully validated, the
device can be certain that it is newer than the most recently installed version
of the same component, and that it is guaranteed to be the most recent version
available at the time that it was downloaded [15].

Validating software versions against locally stored anti-rollback values comes
with certain limitations. In a situation where OEMs have issued multiple secu-
rity updates in quick succession, a device that has not been updated recently
cannot ascertain if an update is the most recent one. In this case, it is possible
to run and update the device with software that is newer than the version held
in the rollback counters, but nevertheless outdated.

4.3 Secure storage

Devices hold many types of data, including application data, OEM configu-
ration, cryptographic keys, DRM-protected media, certificates, and personal
information such as biometrics, messages, and passwords. Different types of
data have different levels of sensitivity; they require require protection from
different kinds of threats, and have different performance requirements. Ful-
filling these requirements in a coherent way requires careful design of the stor-
age subsystem. In this section we discuss some of the tools that can be used to
achieve this goal.

4.3.1 Memory Technologies

Secure nonvolatile memories can be classified as multiple-time programmable
(MTP), few-time programmable (FTP), or one-time programmable (OTP), de-
pending on their programmability. MTP memories such as flash memory or
electrically-erasable programmable read-only memory (EEPROM) can be re-
programmed many times, making them suitable for mutable data such as anti-
rollback counters. These memories are built to provide endurances on the or-

6https://android.googlesource.com/platform/external/avb/+/master/README.md#Ro
llback-Protection

7https://source.android.com/security/verifiedboot/verified-boot#rollback-
protection

https://android.googlesource.com/platform/external/avb/+/master/README.md#Rollback-Protection
https://android.googlesource.com/platform/external/avb/+/master/README.md#Rollback-Protection
https://source.android.com/security/verifiedboot/verified-boot#rollback-protection
https://source.android.com/security/verifiedboot/verified-boot#rollback-protection

4.3. SECURE STORAGE 47

der of a million write cycles8.
Where reprogrammability is not required, device manufacturers can use

OTP memories. Once an OTP memory bit has been written, it cannot be re-
turned to its original state. This makes OTP memory a good choice for data
such as RoTs. In addition, OTP memory requires relatively little space on a
chip and requires few manufacturing steps, making it relatively cheap. These
properties make OTP memory a popular choice for low-cost Internet of Things
(IoT) devices that will not be reprogrammed after manufacture9.

OTP memories can be classified into electronic fuse (eFuse) and antifuse
memories. An eFuse is a strip of metal that can be programmed by passing
a large current through it, vaporizing the metal and breaking the circuit9. The
memory can then be read out by attempting to pass a small current through the
strip, which will fail if the particular bit has been programmed. This approach
has the downside that the broken circuit is visible to microscopy, allowing data
to be read out, and it is possible in some cases that the metal will regrow, al-
lowing manipulation of the data9.

An alternative to eFuse-based memory is antifuse memory. An antifuse mem-
ory cell is based on a field effect transistor (FET) constructed using normal com-
plementary metal-oxide semiconductor (CMOS) processes10. It is programmed
by applying a high voltage to the gate terminal of the transistor, causing break-
down of the oxide layer and providing a conducting path. As with eFuse-based
memory, antifuse memory, once programmed, cannot be rolled back to non-
programmed state. However, unlike eFuse memory, the oxide breakdown is
invisible, meaning that confidential data such as secret keys are better suited
to storage in antifuse-based memory. Moreover, the oxide layer does not re-
grow, providing greater integrity than eFuse-based memory.

These advantages, as well as improved yields and lower powere consump-
tion, has resulted in a gradual replacement of eFuse-based memory by antifuse-
based memory.

4.3.2 Access control to secure memories

The access control requirements of secure storage depend on its ultimate use.
Some areas of memory must remain confidential—for example, cryptographic
secrets. Both read and write access to these must be restricted to the trusted
OS or certain trusted applications (TAs). Conversely, other areas of memory
must not be improperly modified, but can be read without any impact on
security—for example, untrusted software can safely read the bit that deter-
mines whether or not secure boot is enabled, but must not be able to modify
it. In ARM terminology, these are referred to as confidential and public fuses,
respectively [20, p43].

8https://www.synopsys.com/designware-ip/technical-bulletin/advantages-of-
mtv.html

9https://semiengineering.com/the-benefits-of-antifuse-otp/
10http://semiengineering.com/the-case-for-antifuse-otp-nvm-for-secure-reliab

le-socs/

https://www.synopsys.com/designware-ip/technical-bulletin/advantages-of-mtv.html
https://www.synopsys.com/designware-ip/technical-bulletin/advantages-of-mtv.html
https://semiengineering.com/the-benefits-of-antifuse-otp/
http://semiengineering.com/the-case-for-antifuse-otp-nvm-for-secure-reliable-socs/
http://semiengineering.com/the-case-for-antifuse-otp-nvm-for-secure-reliable-socs/

48 CHAPTER 4. PLATFORM INTEGRITY

It may also be desirable to write-protect a region of memory so that it can
no longer be written. This is necessary even with OTP memory, as one possible
value for each bit is represented as an unprogrammed state, and bits with these
values can still be flipped. This can be achieved by writing a lock bit [20, p43],
which prevents further writes to the memory in question. In contrast, the TEE
provides only those hardware and software components that are necessary to
support TAs.

4.3.3 Cryptography on top of secure storage

Where MTP memory cannot be located within an SoC due to its size or man-
ufacturing considerations, cryptographic mechanisms are used to provide se-
cure storage despite the possibility that an attacker might intercept or modify
communications between the SoC and the external storage.

One technique is to use an encrypted file system, which encrypts (and po-
tentially authenticates) data before sending it to external storage, allowing de-
cryption only by a key known to the TEE. The data encryption key must still
be stored inside the SoC, protected by access control mechanisms that ensure
that the storage encryption key is accessible only to the component of the TEE
responsible for secure storage. This is commonly achieved by deriving the key
from the HUK (Section 4.1.1).

Even if an encrypted file system provides authentication, an attacker may
attempt to replay old data from secure storage to the SoC. Roll-back protected
memory block (RPMB) is a type of memory that provides an active interface by
which an SoC can securely communicate with non-volatile storage, not only
providing authentication of data being read and written, but also protecting
against replay attacks by making the external storage device take an active part
in the protocol, so that the SoC can ensure that the data it receives is the most
recent state of a particular external storage device [96]. The mechanism for this
protocol involves a shared key, stored in the flash device and in the SoC, which
is used to generate and verify message authentication codes (MACs), used to
authenticate all read and write operations that access the secured area. Most
current flash device types such as eMMC, UFS and NVMe include a fixed-size
RPMB partition (configured during device manufacture).

Chapter 5

Hardware-assisted Isolation
Mechanisms

In a conventional computing platform, the trusted computing base (TCB)—the
components of the system that, if they behave incorrectly, can cause a viola-
tion of the system’s security guarantees—encompasses the hardware, operat-
ing system (OS), middleware services, as well as the code of the application
itself. On the other hand, traditional OSs and applications have become so
large and complex that the task of adequately securing them has become in-
creasingly difficult. A trusted execution environment (TEE) provides a secure,
integrity-protected processing environment where security-critical functional-
ity can be executed, in separation, and isolated from the traditional operating
system. To this end, the TEE must provide processing, memory, and storage
capabilities which cannot be manipulated by any means from outside the TEE.
Generally, a TEE does not host complete user-facing applications. Instead, the
security-critical functionality required by an application, such as its crypto-
graphic functionality and key storage, is encapsulated into a separate trusted
application (TA) which is run isolated within the TEE. Consequently, a TEE
allows the OS, middleware, and the non-security related portions of an appli-
cation to be excluded from the system’s TCB.

Figure 5.1 shows a device as a series of distinct execution environments,
each with its own set of features and services. The rich execution environment
(REE) ➀ hosts a traditional, “feature rich” OS ➁, services and applications, such
as Android, iOS Windows, Linux or OS X. In contrast, the TEE ➂ provides only
those hardware and software components that are necessary to support TAs ➃.
Typically a TEE management layer ➄ provides application programming in-
terfaces (APIs) for TAs within the TEE. TAs typically do not act on their own,
but are invoked as needed by their respective client applications (CAs) ➅ re-
siding in the REE. The REE is subject to access control which prevents it from
accessing TEE resources unless it does so via well-defined APIs exposed by the
TEE. This access control may be implemented through physically isolating the

49

50 CHAPTER 5. HARDWARE-ASSISTED ISOLATION MECHANISMS

Rich Execution Environment Trusted Execution Environment

TEE component

ApplicationApplicationApplication

Client
Application

Client
Application

Client
Application

Trusted
Application
Trusted

Application
Trusted

Application

Trusted
Application
Trusted

Application
Trusted
Service

Hardware
TEE entry

REE Operating System TEE Management Layer

Figure 5.1: Generic system architecture of a TEE-equipped computing device
adapted from [119].

TEE (e.g., by applying a discrete co-processor), applying isolation enforced by
hardware logic (e.g., a processor secure environment such as ARM TrustZone
or Intel Software Guard Extensions (SGX)), cryptographic sealing, or a com-
bination thereof. Transitions between the REE and the TEE are facilitated by
hardware mechanisms for TEE entry ➆.

Figures 5.2a to 5.2c illustrates different options for the architectural realiza-
tion of TEE hardware. In Figure 5.2a the hardware platform features a dis-
crete, dedicated security co-processor ➀ outside the physical system on chip
(SoC) that contains the central processing unit (CPU)(s). The external security
co-processor is fully isolated from the CPUs on the SoC, and contains its own
memory and peripherals. This enables minimal coupling between the TEE and
the REE, which is beneficial for resisting side-channel attacks which stem from
physical characteristics of sharing hardware resources. In some cases, external
co-processor designs may feature additional tamper-proofing to hinder phys-
ical attacks against the TEE. However, designs featuring external security co-
processors are costly, the co-processors are generally less powerful compared
to the main on-SoC CPUs, and transferring data between an on-SoC CPU and
a security co-processor incurs relatively high overhead. Figure 5.2b shows an
alternative security co-processor design, where the discrete co-processor is em-
bedded on the SoC ➁ together with the on-SoC CPUs. This allows it to more
readily share resources, such as memory and peripherals, with the main on-
SoC CPUs while still being strongly decoupled and isolated from the REE.

Yet another alternative realization of hardware support for TEEs is the pro-
cessor secure environment shown in Figure 5.2c. A processor secure environ-
ment architecture enables the main on-SoC CPUs ➂ to operate in different se-
curity states depending on whether it is executing TEE or REE software. In a
processor secure environment the on- and off-chip resources, such as memory
and peripherals, need to be shared between the processor states corresponding

51

SoC

External security
co-processor 1

ROM

RAM

One-9me
programmable

(OTP) fields

2
Processor

core(s)

Internal
peripherals

Off-chip
memory

External
peripherals

(a) External security co-
processor

SoC

Embedded security
co-processor2

ROM

RAM

OTP
fields

Processor
core(s)

Internal
peripherals

Off-chip
memory

External
peripherals

(b) Embedded security co-
processor

SoC

ROM

RAM

OTP
fields

2
Processor

core(s)

Internal
peripherals

Off-chip
memory

External
peripherals

3

(c) Processor secure environ-
ment

Legend

System-on-Chip
(SoC)

Normal
hardware

Secure
Hardware

Hardware with
security states Off-chip busOn-chip bus

Figure 5.2: Design options for architectural realization of TEE hardware.
Adapted from [119].

to the TEE and the REE. Consequently processor secure environment designs
typically feature hardware access control logic which decide which areas of
memory and / or peripherals may be accessed from which CPU security states.
The CPU itself contains hardware logic (e.g., a dedicated instruction or inter-
rupt) to trigger a mode switch from the REE state to the TEE state. Because the
TEE and the REE execute on the same processor, a processor secure environ-
ment is generally more cost-effective than a dedicated security co-processor,
and allows the TEE to benefit from high-performance processing capabilities
of the main CPU. On the other hand, because the CPU must be time-shared
between the REE and TEE both processing environments cannot be active si-
multaneously. The resource sharing between the two environments also leads
to a tighter coupling between the TEE and the REE where physical properties of
the underlying hardware, e.g., timing characteristics and cache utilization, may
inadvertently leak information about the TEE operation to the REE. Processor
secure environments are also more susceptible to micro-architectural weak-
nesses, such as transient information leakage through side-channels caused by
speculative execution (see Section 9.1.2).

52 CHAPTER 5. HARDWARE-ASSISTED ISOLATION MECHANISMS

5.1 Split-world architectures

The processor secure environment in Nokia’s radio application processor (RAP),
Texas Instruments (TI)’s M-Shield and the currently widely deployed ARM
TrustZone are all based on the notion of a split-world architecture, where hardware-
enforced isolation inside the CPU separates execution performed on each core
into the “normal” execution environment (REE), and a single TEE. In this sec-
tion, we discuss ARM’s TrustZone implementations as representative exam-
ples of split-world TEEs.

ARM microprocessors are a family of reduced instruction set computer
(RISC)-based computer designs widely used in computing systems which re-
quire reduced cost, heat, and power consumption compared to the processor
architectures found in personal computers. The ARM family includes three
different classes of processors;
Cortex-A series application processors are deployed in mobile devices such as
smartphones and tablets, laptop computers, networking equipment and other
home and consumer devices.
Cortex-R series real-time processors are deployed in embedded devices with
strict real-time, fault tolerance and availability requirements such as wireless
baseband processors, mass storage controllers as well as in safety critical auto-
motive, medical and industrial systems.
Cortex-M series of embedded microcontrollerss (MCUs) are geared toward In-
ternet of Things (IoT) systems requiring minimal cost and high energy-efficiency
such as sensors, wearables and robotics.

The ARM architecture supports two variants of TrustZone; one for Cortex-
A application processors [18], and TrustZone-M for the Cortex-M series of
MCUs [19]. Due to security requirements in mobile OSs such as Android [7],
TEEs based on TrustZone are today deployed in all Android smartphones based
on ARM application processors. TrustZone has also been used as a security
foundation in other application domains, including industry, automotive, and
aerospace [211].

5.1.1 TrustZone

Figure 5.3 depicts the architecture of TrustZone for Cortex-A application pro-
cessors. It introduces two protection domains: the REE (referred to in TrustZone-
terminology as the normal world) and the TEE (the secure world). At any given
point in time each individual processor core in an ARM SoC operates exclu-
sively in a state corresponding to one of the worlds, alternating between nor-
mal and secure execution in a time-sliced fashion. The processor state is de-
termined by the Non-Secure (NS) bit in the individual core’s Secure Configu-
ration Register (SCR). Transitions between the non-secure and secure state is
mediated by a secure monitor ➂, which is a security software module that is
part of the low-level firmware. The secure monitor is responsible for securely
preserving the processor state whenever a world transition occurs.

5.1. SPLIT-WORLD ARCHITECTURES 53

Normal world Secure world

Client
Application

Client
Application

Client
Application

Trusted
Application
Trusted

Application
Trusted

Application

TrustZone
Hardware

Secure Monitor Call

REE OS
TEE OS

Platform firmware Secure Monitor

Secure Interrupt

Client
Library

TEE OS
Driver

TA
Library

Figure 5.3: TrustZone TEE architecture. ➀ – ➆ indicate the sequence of events
during a transition from the normal world to the secure world.

The normal and secure worlds in TrustZone are orthogonal to the tradi-
tional hierarchical protection domains [229] that enable the separation of privi-
lege between user applications and the OS kernel. ARM processors implement
separate privilege levels through exception handling facilities; when encoun-
tering an exception, the privilege level can either increase or remain the same,
and when returning from handling an exception, it can either decrease or re-
main the same. For this reason, the privilege levels in the ARM architecture are
referred to as exception levels (ELs). The ARMv8-A architecture defines four
exception levels, EL0 to EL3, where EL3 is has the highest level of privilege.
User applications typically run at EL0, and the OS kernel at EL1. In a virtual-
ization environment, the hypervisor executes in EL2. The secure monitor exe-
cutes in EL3 (also referred to as monitor mode in the ARMv6-A and ARMv7-A
revisions of the ARM architecture).

Figure 5.4 illustrates the relationship between exception levels and split-
worlds in ARMv8-A. The normal world EL0 and EL1 have corresponding coun-
terparts in the secure world, called secure EL0 and secure EL1, respectively. The
secure world lacks EL2, i.e. a hypervisor mode for the secure world in the ARM
architecture revisions up to ARMv8.3-A. The ARMv8.4-A architecture revision
also adds secure EL2. We discuss virtualization in TrustZone on page 56. Se-
cure EL0 is typically reserved for TAs, whereas the TEE OS kernel runs secure
EL1. In contrast to its normal world counterpart, secure EL1 has unconstrained
access to the whole physical address space, including memory that belongs to
the normal world.

54 CHAPTER 5. HARDWARE-ASSISTED ISOLATION MECHANISMS

Secure worldNormal world

EL3

EL2

EL1

EL0 Applications

OS Kernel

Hypervisor

Trusted OS Kernel

Trusted Applications

No hypervisor in
Secure world

Platform firmware Secure monitor

Figure 5.4: ARMv8-A exception levels. Adapted from [25].

Figure 5.3 illustrates the sequence of events in a transition from the normal
world to the secure world. First, the client application in the normal world
that invokes the client library ➀, which implements a communication API with
the respective TA. The client library issues a system call to a TEE OS driver ➁
residing in the REE OS. The TEE OS driver implements a marshaling scheme
and calling convention understood by the TEE OS and secure monitor. The
TEE OS driver can trigger a world transition from the normal world EL1 by
executing a Secure Monitor Call (SMC) instruction ➂, or via certain hardware
exception mechanisms ➃. A subset of processor exception lines (namely inter-
rupt request, fast interrupt request, external data abort, and external prefetch
abort) can be configured such that the exception is to be handled by software in
the secure world. If that is the case, the processor will trigger a world transition
when receiving such an exception. Regardless of whether a world transition is
triggered by a SMC instruction or via an exception, as a result of the trigger
execution will trap into the secure monitor in EL3 ➄. When in EL3, the proces-
sor is always executing in the secure state regardless of the value of the SCR
NS bit. The secure monitor will perform a world switch, and a return-from-
exception to restart processing in the restored secure world. The TEE OS ➅ can
then check for incoming call parameters per established convention with its
REE driver, determine the recipient TA, and invoke the corresponding service

5.1. SPLIT-WORLD ARCHITECTURES 55

hook in the TA’s library API ➅.

TrustZone in ARMv8-A

In the original TrustZone implementations for ARMv6-A and ARMv7-A, the
secure monitor was part of the secure OS, and its exact function specific to a
particular secure OS implementation. In ARMv8-A the code running in EL3 is
more clearly separated from the TEE OS, allowing key platform management
functions to be set apart from the world switch logic and be placed in discrete
EL3 firmware. The most important of such services is power management, but
EL3 firmware can also include platform specific services and refinements.

As a consequence the software interfaces visible from the firmware to the
TEE and the REE OS implementers required interoperability. These are speci-
fied by the following three documents from ARM:
SMC Calling Convention (SMCC) [27] specifies how registers are to be used
for arguments and return values and how the SMC instruction is to be invoked
when requesting a service from the secure world.
Power State Coordination Interface (PSCI) [26] specifies a standard for system
and processor power management, including boot, hotplug, idle, and system
shutdown and reset.
Software Delegated Exceptions Interface (SDEI) [28] defines a software equiv-
alent to non-maskable interrupts.

In addition to specifications, ARM is backing an open-source effort to pro-
vide a reference implementation of the EL3 software stack, the Trusted Firmware
project1. Trusted Firmware implements the SMCC, PSCI and SDEI specifica-
tions and provides a reference implementation for boot integrity.

Memory and peripheral isolation

In order to enforce memory isolation between the normal and secure worlds,
the memory infrastructure in TrustZone-enabled SoCs have been extended with
the addition of the TrustZone Address Space Controller (TZASC) and the Trust-
Zone Memory Adapter (TZMA) components. The TZASC is a component on
the Advanced eXtensible Interconnect (AXI), which allows specific memory re-
gions in dynamic random access memory (DRAM) to be configured as secure
or non-secure. The NS bit that indicates the current execution state of the pro-
cessor is propagated on the AXI bus with each bus transaction. The TZASC
enforces that accesses to secure memory are only allowed if the processor is
executing in the secure state. However, memory configured as non-secure is
accessible from both the secure, and the non-secure processor states. Program-
ming the TZASC requires secure state access. The TZMA provides similar ac-
cess control functionality for off-chip read-only memory (ROM) or static RAM
(SRAM). To provide memory isolation at the cache-level, the cache line tags

1https://www.trustedfirmware.org/

https://www.trustedfirmware.org/

56 CHAPTER 5. HARDWARE-ASSISTED ISOLATION MECHANISMS

of the processor also store the NS bit to indicate whether cache line access is
granted in secure or non-secure state.

In a typical ARM system most peripherals are not connected directly to
the main AXI bus, but to a simpler, lower power Advanced Peripheral Bus
(APB). For backwards compatibility with existing peripheral designs, the APB
protocol does not carry the bits related to the TrustZone security state of the
bus transactions. Instead, peripheral access control occurs at the AXI-to-APB
bridge that translates transactions between the high-speed AXI and the low-
power APB. Each AXI-to-APB can mediate accesses for up to 16 peripherals on
its local APB based on an input signal fixed by the system designer. The signal
is used to determine if the peripheral is configured as secure or non-secure.
Similar to the TZASC and the TZMA, the bridge will reject non-secure transac-
tions to secure peripherals. In systems equipped with a TrustZone Protection
Controller (TZPC), the security state of peripherals connected to the APB can
be dynamically configured at run-time.

The TZASC, TZMA and TZPC are all optional components which may or
may not be present on specific SoC designs; older SoC implementations do not
incorporate such memory controllers at all; so any form of run-time partition-
ing of secure and non-secure regions is not possible. Unless the SoC incor-
porates either dedicated on-SoC memory for the secure world, or a hardwired
partition scheme, TrustZone isolation may not be usable to its full extent. How-
ever, it is typically less expensive to incorporate a single large memory device
and partition it into secure and non-secure regions than it is to provide sep-
arate dedicated memories for each world. ARM specifications also leave the
number of memory regions and the granularity of configurable regions as im-
plementation defined.

Virtualization in TrustZone

Over the years, as TrustZone deployment has grown especially in consumer
devices, a number of TEE OSs (Table A.1) have emerged from different ven-
dors . Despite industry efforts to standardize the APIs between the REE and
TEE OSs [113], and the TEE OS and TAs [114], the majority of contemporary
TEEs are either based on proprietary APIs, or provide proprietary extensions
to standard APIs. Unfortunately those dependencies on proprietary APIs and
vendor-specific libraries limit the portability of TAs between TEE OSs from dif-
ferent vendors. The high cost of porting TEE OSs TAs across devices addition-
ally points to that the corresponding CAs also are TEE specific, thus preventing
service providers from taking full advantage of standardized TEE functionality
As a result, some original equipment manufacturers (OEMs) have opted to host
multiple TEE OSs in secure EL1 [52] in order to support a wider range of CAs
and their TAs. This, in turn, poses a number of architectural challenges, such as
ensuring logical isolation between kernel components belonging to each TEE
OS that share secure EL1. Typically this requires the TEE OSs to be modified,
i.e., requires collaboration between different TEE OSs vendors.

Another challenge that stems from the original TrustZone architecture is its

5.1. SPLIT-WORLD ARCHITECTURES 57

Secure world

FW Secure partitionTEE Secure partition

Normal world

EL3

EL2

EL1

EL0 Applications

OS Kernel

Hypervisor Secure Partition Manager

EL3 Firmware

Trusted OS Kernel

Trusted Applications

Platform firmware

Figure 5.5: ARMv8.4-A exception levels. Adapted from [25].

inability to protect the REE OS from the TEE OS. Software in EL3 and Secure
EL1 have unconstrained access to the entire physical address space, including
memory mapped by the REE OS. This property has been exploited in priv-
ilege escalation attacks, where vulnerabilities in the TEE OS are leveraged to
compromise the security of the REE OS kernel. Conceptually the original Trust-
Zone architecture suffers from over-privilege of the secure EL1 software, since
the split between the normal and secure world is in actuality asymmetric, akin
to separation between privilege levels; the hardware only enforces that Non-
Secure accesses to memory are isolated from secure memory regions, but not
vice versa.

To address this challenge with respect to secure EL1 the ARMv8.4-A revi-
sion of the ARM architecture adds virtualization support in the secure world [25].
Concretely this means the addition of a new exception level, secure EL2, to the
available privilege modes. This, paired with a second stage of address trans-
lation controlled by a secure partition manager (SPA) at secure EL2, enables
separation among distinct TEE OSs. The SPA is effectively a minimal hypervi-
sor that partitions distinct TEE OSs or platform-specific firmware components
into separate secure partitions at secure EL1 or secure EL0. Figure 5.5 illustrates
the ARMv8.4-A exception levelss. Similar to traditional virtualization, the par-
titioned “guest” TEE OS controls the first stage of address translation from the
guest’s virtual address (VA) space to an intermediate physical address (IPA)
space. The second stage or address translation from IPAs to actual pointer au-
thentications (PAs) is performed by the SPA, thus allowing it to decide which
areas of physical memory each secure partition has access to. Secure partitions
effectively provide sandboxed environments that enable: 1) distinct TEE OSs
at secure EL1 to be isolated from each other, 2) the REE OS to be isolated from
TEE OSs, 3) platform firmware to be isolated from TEE OSs.

58 CHAPTER 5. HARDWARE-ASSISTED ISOLATION MECHANISMS

Secure worldNormal world

Non-secure code

Non-secure data

Secure code

Secure data

Secure gateway veneers

Legend

Secure region Non-secure region Non-secure callable

BXNS
BLXNS

Secure gate Veneer

Figure 5.6: TrustZone-M architecture.

5.1.2 TrustZone-M

TrustZone-M [19] is a variant of TrustZone for the ARMv8-M MCU-class Cortex-
M processors. In terms of functionality, TrustZone-M replicates the properties
TrustZone, but differs significantly in terms of its architectural realization. Like
TrustZone, TrustZone-M introduces secure state non-privileged and privileged
processor modes in addition to the conventional non-secure state counterparts.

Cortex-M processors implement two stacks in non-secure state, the main
stack and the process stack. The stack pointer (sp) is banked between proces-
sor modes, i.e., multiple copies of a register exists in distinct register banks.
The register bank, and consequently the version of the stack pointer (SP) reg-
ister in use, is determined by the current processor mode. Register banking
allows for rapid context switches when dealing with processor exceptions and
privileged operations. Application software on Cortex-M processor executes
in thread mode where a stack-pointer select (spsel) register determines whether
the application uses the main or process stack. When the processor executes an
exception it enters a handler mode. In handler mode the processors always use
the main stack.

In TrustZone-M sp registers used to address the main and process stacks are
banked between the non-secure and secure states. Figure 5.7 illustrates the set
of SP registers in a ARMv8-M processor equipped with TZ-M. The MSP_ns ➀
and PSP_ns ➁ represent the main and process stack pointer in non-secure state,
whereas the MSP_s ➂ and PSP_s ➃ represent the corresponding stack pointers

5.1. SPLIT-WORLD ARCHITECTURES 59

Secure stateNon-secure state

TrustZone-M
Hardware

MSP_ns

PSP_ns

MSP_s

PSP_s

Handler Mode

Thread Mode SP + SPSEL

SPSP

SP + SPSEL

Figure 5.7: Stack pointer management in TrustZone-M.

in the secure state. The remaining general purpose registers are shared (not
banked) between the non-secure and secure states.

Also similar to TrustZone, the memory management is extended to allow
partitioning the device’s physical memory into secure and non-secure regions.
In addition, TrustZone-M introduces a new non-secure callable (NSC) mem-
ory type. Whereas secure memory regions contain the secure program image
and data, the NSC memory regions contain secure gateway veneers, i.e., branch
instructions which point to the actual subroutine code in secure memory. En-
forced by hardware, non-secure world code is allowed to call secure world
code only via these secure gateway veneers.

Memory regions and their security states are defined either by a Secure At-
tribution Unit (SAU) or an Implementation Defined Attribution Unit (IDAU).
The specifics of the IDAU are left up to the hardware manufacturer, but typi-
cally the IDAU enables the definition of up to 255 static memory regions either
based on a hardwired memory map, or one configured though one-time pro-
grammable (OTP) memory. The optional SAU on the other hand allows the
adjustment of the memory layout at run-time by up to 8 additional non-secure
or NSC memory regions at run-time. The SAU is configured through a set of
memory mapped registers placed in a secure region of memory. In cases where
a region mapping conflicts between the IDAU and SAU conflicts, the mapping
with the highest security level takes precedence; with secure memory being
the highest, followed by NSC memory and non-secure memory. For instance,
if an address is defined to be non-secure by the SAU and secure by the IDAU,
the address is considered to be secure.

Figure 5.6 illustrates the transition to and from the secure state in TrustZone-
M. Whereas transitions to the secure world in TrustZone are initiated through
a dedicated hardware exception that traps into the secure monitor at EL3, in
TrustZone-M the context switch to secure state occurs automatically as the pro-
gram flow of non-secure state execution ➀ targets specific call gates in a NSC
memory region ➁. Each such call gate is identified by a secure gate (SG) instruc-

60 CHAPTER 5. HARDWARE-ASSISTED ISOLATION MECHANISMS

tion, a virtual opcode that has to precede the memory location in NSC memory
to which a inbound branch can jump. The veneer located immediately after the
call gate branches into the actual secure subroutine entry point in secure mem-
ory ➂. The purpose of NSC memory is to prevent non-secure program code
to branch into invalid entry points in secure program code (such as into the
middle of subroutines, a common exploitation technique for run-time attacks
that exploit memory vulnerabilities). Calls from the non-secure state targeting
secure memory outside NSC regions, or non-sg instructions in the NSC will
fail in a secure fault, a new type of hardware exception that always traps into
the secure state. Note that the TrustZone-M design makes do without an ex-
plicit NS bit stored within the processor; the security state is determined by the
address of the currently executing instruction. If the address lies within secure
memory, the processor is in the secure state, otherwise the processor is in the
non-secure state.

Two new instructions are available to secure world software in order to
transition into the non-secure state: branch and exchange (to) non-secure (BXNS)
and branch with link and exchange (to) non-secure (BLXNS) ➃. The BXNS
instruction is used by functions executing in the secure state to return to the
non-secure state on function return. The BLXNS instructions allows the secure
world code to call a function in the normal world code. When transitioning
from the secure to the non-secure state, the return address and processor state
are pushed onto a secure state main stack in secure memory. The link register
of the processor is set to a predefined FNC_RETURN value. To return to the
secure state, the non-secure state attempts to branch to FNC_RETURN (as this
is the return address found on the stack). Upon detecting FNC_RETURN the
processor will instead restore the processor state and the true return address
saved on the secure state main stack will be targeted. This elaborate mecha-
nism prevents normal world code from manipulating the destination address
returned to in secure state. Since general purpose registers are shared between
the secure and the non-secure states, secure world software is additionally re-
sponsible for sanitizing any sensitive information held in general purpose reg-
isters when transitioning into the non-secure state.

TrustZone-M also extends processor exception handling to facilitate inter-
rupts which are handled by interrupt service routines (ISRs) that can be config-
ured to execute in secure state [22]. When an exception is taken the hardware
saves the processor context onto the stack corresponding to the security state
which was active before the exception arrived. Exception priorities can be set
such that non-secure exceptions are allowed to preempt secure state code. In
this case, the processor hardware saves the secure state processor context onto
the secure state main stack. The saved context includes a return address, which
indicates the address of the next instruction to be executed in the interrupted
program. The link register visible to the non-secure exception is set to a prede-
fined EXC_RETURN, which indicates which SP corresponds to the stack frame
and what security state the processor was in before the entry occurred.

5.2. ENCLAVE ARCHITECTURES 61

5.2 Enclave architectures

Split-world architectures rely on the traditional, hierarchical model of protec-
tion where software executing at a higher privilege, principally the TEE OS,
provides logical separation of TAs from one another. This makes split-world
TEEs susceptible to some security pitfalls that are well understood in the con-
text of REE OSs. In general, all software that runs with a higher privilege
level than application software is inherently trusted and part of the application’s
TCB, simply because anything with greater privileges than the application will
have greater access to the underlying machine than the application has. Conse-
quently, the trustworthiness of a TEE implementation relies on the correctness
of both the secure hardware, as well as the ostensibly secure software stack.
Furthermore, split-world architectures lack bidirectional isolation: while the
TEE is protected from software in the normal world, the opposite is not true.
Recall that in TrustZone, secure world software that can operate with physical
memory addresses can not only access any secure memory, but has full access
to REE memory as well. If an attacker can exploit software vulnerabilities in
the TEE OS to breach the separation between TAs, or between the TEE and
the REE, they can potentially undermine the trustworthiness of the entire plat-
form. The original rationale for processor secure environments was to exclude
the large and complex REE OS from the system’s TCB. A smaller TCB generally
leaves less room for implementation flaws. As the complexity and size of soft-
ware inside the TEE increases, so does the likelihood of implementation flaws
inside the TEE, which may introduce security weaknesses and vulnerabilities.
This, in turn, disincentivizes OEMs and other stakeholders, who rely on the
trustworthiness of the TEE from opening the TEE ecosystem for third-party
TA developers, simply because more code running in the TEE means a greater
risk for software flaws in the system.

Enclave architectures aim to decouple the notion of privilege from the notion of
the trusted computing base. They do so by providing strong isolation between
each (unprivileged) TA using unconditionally trusted hardware, such that the
(privileged) OS does not become part of the TCB. This allows each isolated
enclave to reduce its TCB to just the TA (and a small amount of supporting
code) executing within the enclave, and the hardware that provides the under-
lying execution environment and isolation. The hardware-enforced isolation
not only protects each enclave from client applications and the OS, but also
from other enclaves on the system, effectively making each enclave its own
distinct TEE. This prevents TAs from posing a security risk to one another. In
addition, as enclaves do not necessarily possess more privileges than regular
userspace processes, the REE kernel also maintains a level of protection against
a potentially compromised TA. This reduces the risks involved in allowing soft-
ware developers to take advantage of TEE functionality in applications and
may thus remove some of the disincentives that have prompted OEMs to limit
TEE usage to a restricted set of TAs.

To date, enclave architectures have not seen widespread deployment in mo-
bile devices. At the time of writing, the only commercially-deployed enclave-

62 CHAPTER 5. HARDWARE-ASSISTED ISOLATION MECHANISMS

Client ApplicationClient Application Intel Architectural Enclave
Service Manager

Client Application

Trusted
Application
Trusted

Application
Architectural

Enclave

SGX
Hardware

Enclave
Creation

Trusted
Application
Trusted

ApplicationEnclave

Enclave Entry
and Exit

Operating System

Key
Derivation

Figure 5.8: Intel SGX architecture. Isolation between TAs is provided by the
SGX hardware itself, which mediates all interactions between an enclave and
other software components (the application hosting the enclave, other applica-
tions, and the OS itself). This protects enclaves from a compromised operating
system, in contrast to split-world architectures whose isolation depends on the
security of the secure-world OS.

type TEE architecture is Intel’s SGX [181, 182] which is principally used to en-
able trusted remote computation in a public cloud setting. However, enclave-
type TEEs have rapidly become the predominant design paradigm in emerging
TEE architectures. In this section, we provide and overview of SGX as a repre-
sentative example of an enclave-type TEE architecture (Section 5.2.1). We later
discuss recent academic enclave architectures (Section 5.2.2) and enclaves in
the next generation ARM architecture (Section 12.1.10).

5.2.1 Intel SGX

An application that uses SGX can create an enclave, consisting of a region of
protected memory containing both code and data, and that can only be read
or written by the code stored within the enclave. Code within the enclave can
be executed by jumping to a defined entry point of the enclave using an ecall
instruction.

The initial enclave state is measured by the processor during enclave ini-
tialization, yielding an MRENCLAVE value, a hash of the enclave metadata con-
catenated with the contents of each page of the enclave’s memory state. The
enclave must also be signed by an authorized developer, whose public-key
fingerprint—denoted MRSIGNER—also forms part of the TA identity.

5.2. ENCLAVE ARCHITECTURES 63

SGX protects against physical and cold-boot attacks [134] by encrypting the
contents of enclave memory before it leaves the processor SoC [133]. A random
memory-encryption key is generated on every boot, and the encrypted data
uses a combination of message authentication codes (MACs) and a Merkle tree
to ensure the integrity of data read back from off-chip memory.

Each processor supporting SGX contains embedded secrets accessible only
to the SGX hardware. Various SGX instructions will then use these secrets to
derive keys that are specific to a particular TA or developer. Encrypting data
with these TA-specific keys seals the data to a particular processor and TA, such
that only the same TA running on the same processor will be able to decrypt the
sealed data. SGX provides hardware-backed (non-volatile) monotonic coun-
ters that can be used for rollback protection. Together, these are sufficient to
provide rollback-protected secure storage.

Rather than implementing the entirety of SGX in hardware, Intel placed
some functionality into so-called architectural enclaves: enclaves signed by Intel
that have access to some additional features of the processor. There are cur-
rently two architectural enclaves: the launch enclave and the quoting enclave.
The launch enclave is used to validate the public key used to sign an enclave
against a whitelist of authorized developers, and to compute a launch token for
the enclave, which is validated by the einit instruction before the enclave is
allowed to run. The quoting enclave is used for remote attestation and will be
discussed below.

SGX supports two kinds of attestation: local and remote. Local attestation
allows a piece of data to be authenticated to an enclave as having come from an-
other enclave on the same machine with a particular identity. Each enclave can
obtain a report key, derived from a combination of a processor-wide secret and
the enclave identity—including whether the enclave is in debug or production
mode, the enclave signer, (optionally) the enclave hash. Other enclaves cannot
access this report key directly, but one enclave can use the ereport instruction
to have the hardware build a predefined ‘report’ structure containing the iden-
tity of the current TA and some application-defined data, as well as a MAC
over the rest of the report computed with respect to the report key of some
other TA (the ‘target TA’). An enclave running the target TA can access this key
and directly validate the MAC over the report, assuring itself that the report
was obtained by an ereport instruction in the specified TA.

Since the report key used for local attestation is derived from a hardware-
specific key, a report structure cannot be validated on a remote machine. Re-
mote attestation is a two-step process in which an enclave produces a report
verifiable by a special quoting enclave provided by Intel. The quoting enclave
has access to a secret embedded into the processor at manufacturing time that
allows it to authenticate itself to Intel. After authenticating itself, it obtains an
Enhanced Privacy ID (EPID) [68] anonymous credential that can be used to
sign a report, such that the report can be verified as coming from a real quot-
ing enclave, without linking the message to a physical processor. This allows a
remote party to trace the provenance of a message to a particular TA.

64 CHAPTER 5. HARDWARE-ASSISTED ISOLATION MECHANISMS

5.2.2 Emerging Enclave TEEs

A growing body of academic work demonstrates that the isolation boundaries
provided by processor secure environments are not always meaningful. Intel
SGX, in particular, has received criticism for not defending against side-channel
attacks (Section 9.1) by design. Side-channel attacks may enable an adversary,
who is able to gather statistics from the CPU regarding the execution of an en-
clave, to deduce private information from within the enclave. Characteristics
such as the enclave program’s memory access patterns may leak information to
the adversary without them directly violating the enclave’s isolation. Emerg-
ing enclave architectures, such as Sanctum [83], MI6 [63], and Keystone [165]
build upon a similar premise as SGX enclaves, isolating the enclave software
from the underlying OS using primitives based in hardware (and software),
but extend the security properties of the isolation to also cover a threat model
that includes side-channel attacks.

The overarching principle behind many of these architectures is an “im-
mutable commitment of resources” to an enclave, which ensures that no other
process (or even the OS) competes for said resources with the enclave. The
resource commitment can enforced by either a spatial or temporal separation
of resources, or a combination of both. Architectures using spatial separation
partition caches so that cores executing enclave code receive a dedicated set
of cache lines that are spatially separated from cache lines used by untrusted
code. With temporal separation, caches are flushed whenever a core transitions
from enclave mode to non-enclave mode, preventing the cache state from leak-
ing enclave data to non-enclave code. This prevents side-channel attacks that
are based on the cache-timing (Section 9.1).

This challenge is exacerbated by modern processors supporting out-of-order
execution, where control-flow mis-speculation can be used by an adversary to
tamper with enclave execution (e.g., the Foreshadow attack against SGX [70]).
This makes it necessary to clear microarchitectural state when transitioning
between enclave mode and non-enclave mode. This is particularly challeng-
ing given the wide variety of microarchitectural state and resources that may
be shared. For example, even though the enclave’s cache lines are spatially
separated from untrusted code, the cache as a whole can only handle a fixed
number of requests at a time. If the shared cache cannot take any more re-
quests, cache misses in the per-core caches will stall the processor, causing tim-
ing variations on cache misses which can be detected by untrusted software.
By measuring such timing variations, untrusted software can potentially infer
characteristics about an enclave’s memory access patterns.

In Chapter 12, we will review a number of new TEE architectures that at-
tempt to overcome many of these challenges.

5.3. SECURITY CO-PROCESSORS AND MULTI-TEE ARCHITECTURES 65

5.3 Security co-processors and multi-TEE architec-
tures

As we saw in Chapter 2, the dominant mobile TEE design, processor secure
environments, was chosen because of the desire to keep the bill-of-materials
costs low. The drawbacks of current processor secure environments, such as
the susceptibility to micro-architectural and other side-channel attacks, have
prompted research into sophisticated side-channel resistant enclave architec-
tures, such as Sanctum and MI6 discussed above, but also justify the inclu-
sion of dedicated security co-processors. A separate dedicated co-processor
equipped with its own internal memory, caches, and other supporting hard-
ware components such as cryptographic accelerators, are likely to be more
resistant to side-channels and microarchitectural attacks originating from un-
trusted software running on the main processor. In this section we will explore
TEE designs that are either based solely on a dedicated security co-processor,
or supplement on-board processor secure environments by other types of hard-
ware security modules. We refer to the latter as multi-TEE system architectures.

Prominent examples of multi-tee system architectures include Apple’s Se-
cure Enclave Processor (SEP) [12] and Google’s Titan M chip [188]. The in-
clusion of a tamper-resistant hardware security module (HSM) in addition to
a processor secure environment has the benefit of reducing the attack surface,
thereby limiting the scope for side channels and invasive physical attacks. It
can also greatly simplify some TEE uses cases, such as those requiring secure
access to peripherals. These can be accounted for at SoC design time by en-
suring that peripherals used as e.g. a secure path to a user are hardwired to be
accessible only from a discrete HSM.

5.3.1 Intel Security & Management Engines

In 2012 Intel launched it’s first smartphone SoC, designed to provide support
for the Android operating system on Intel x86 processors. At that time, the
existing SoCs developed for the smartphone and tablet market by companies
such as TI, Nvidia, Qualcomm and Samsung were all based around ARM-
based processors. Intel’s SoC platform, codenamed Medfield [156], is based
around an Intel Atom processor combined with all the necessary input/output
(I/O) interfaces to complete a smartphone design. The Medfield SoC incorpo-
rates a dedicated “security engine”, a discrete co-processor that provides secure
storage via eMMC NAND flash and OTP fuses, cryptographic acceleration
and random number generator (RNG) as well as security timers and coun-
ters [142]. The security engine hosts a programmable TEE environment, called
“Chaabi”2that supports the necessary TAs required by Android, i.e. keymaster,
digital rights management (DRM) etc.

2https://android.googlesource.com/platform/hardware/bsp/intel/+/4cfb5f6f9d071
12035bacdc3959a66feab938de1

https://android.googlesource.com/platform/hardware/bsp/intel/+/4cfb5f6f9d07112035bacdc3959a66feab938de1
https://android.googlesource.com/platform/hardware/bsp/intel/+/4cfb5f6f9d07112035bacdc3959a66feab938de1

66 CHAPTER 5. HARDWARE-ASSISTED ISOLATION MECHANISMS

The notion of an independent, isolated security co-processor was not new
to Intel. Since 2007, Intel’s “mainstream” chipsets, e.g., the Core family of
microprocessors, have included an embedded computing environment com-
monly referred to as Management Engine (ME) [222]. ME was first introduced
for implementing Intel’s Active Management Technology (AMT) in its main-
stream chipsets. AMT is an advanced (remote) system management feature
originally introduced in Intel’s gigabit Ethernet controllers. It was the first ap-
plication to be moved to ME. Security applications soon followed, the first be-
ing integrated Trusted Platform Module (TPM) functionality (marketed under
the Intel Platform Trust Technology (PTT) moniker). In contrast to a conven-
tional, discrete TPM chip, ME integrated TPM is realized as TA within the ME.
Similar to processor secure environments, the principal motivation for integrat-
ing TPM functionality as part of the ME firmware is a reduced bill-of-materials
compared to a discrete TPM chip. SGX enclaves also leverage ME by utilizing
the ME’s cryptographic acceleration, monotonic counters, and secure timer.

The security engine for mobile chipsets and ME for the mainstream chipsets
have gone through a number of iterations throughout different generations of
Intel architectures. In current Intel terminology (as of 2017) the security en-
gine and ME are referred to as the Converged Security and Manageability En-
gine (CSME), with different firmware sets for mainstream, server, and mobile
chipsets respectively.

On Intel’s modern server chipsets (starting with 2017 “Lewisburg” chipset)
ME is complemented by another co-processor, the Innovation Engine (IE) [177].
Whereas ME is a closed system that solely runs Intel’s platform software and
applications, IE is intended as an isolated execution environment open to sys-
tem designers (e.g., OEMs) to run customized firmware in. The combination of
ME and IE therefore also constitutes a multi-TEE architecture, where different
discrete co-processors are utilized by different stakeholders.

5.3.2 Apple Secure Enclave Processor

SEP [12, 173, 174] is a security co-processor in Apple iPhone, iPad, and Mac-
Book devices introduced in 2018 and later. SEP was introduced for iOS devices
using the A7 SoC with the release of the iPhone 5S, the first phone manufac-
tured by Apple based on the 64-bit ARMv8-A architecture. In addition to SEP,
it featured a TrustZone-enabled ARM application processor cluster. TrustZone
in iOS is used for REE kernel integrity protection, while SEP is responsible
for key management and cryptographic operations for application data protec-
tion, including file-level encryption as well as fingerprint and face data from
the Touch ID and Face ID biometric sensors. SEP prevents the main application
processors from gaining direct access to sensitive biometric data and crypto-
graphic keys. Only a small amount of dedicated SRAM is available to the SEP,
and similarly to TrustZone, SEP must therefore also utilize external DRAM
shared with the main application processor. To do so securely, DRAM allocated
to SEP is protected by 1) TZASC protected memory regions (TZ0 for SEP, and
TZ1 for TrustZone), and 2) memory encryption, based on an ephemeral mem-

5.3. SECURITY CO-PROCESSORS AND MULTI-TEE ARCHITECTURES 67

ory protection key generated at boot time using SEP’s dedicated RNG. The
memory protection key is created by the Secure Enclave Boot ROM, which acts
as the root-of-trust (RoT) for SEP code integrity. SEP itself runs a Secure En-
clave OS based on a customized version of the L4 microkernel. Later iterations
of SEP employ authenticated encryption to ensure the integrity of the enclave
memory (A8 SoC and newer) and run-time replay protection based on nonces
stored in on-chip SRAM (A11, and S4 SoCs and newer). The replay protection
is extended to data stored by SEP on the REE file system in A12 and S4 SoCs,
by including an anti-replay counter stored in non-volatile memory in a discrete
Integrated Circuit (IC). Communication with the application processor occurs
via an interrupt-driven mailbox and shared memory in unprotected dynamic
random access memory. On MacBook devices based on the Intel architecture,
SEP is part of the T2 Security Chip [11], which apart from SEP also integrates
a system management, a controller, an image signal processor, an audio con-
troller, and an SSD controller. The T2 chip also implements a hardware trusted
path from the monitor lid hinge to the device’s microphone, which ensures that
the microphone is disabled whenever the lid is closed.

5.3.3 Google Titan M

Google’s Titan M chip [188] is an evolution of the Titan HSM [228] deployed
in Google’s cloud platform. However, in contrast to Titan, Titan M is geared
towards mobile devices. Specifically Titan M is designed to meet the the se-
curity needs of Google’s Pixel line of Android devices, starting with the Pixel
3 launched in 2018. Similar to Apple’s SEP, Titan M is a separate, physically
isolated chip from the main ARM processor. Unlike SEP Titan M does not
share memory or persistent storage with the main processor. However, Titan
M is based on a Cortex-M3 MCU with only 64 Kbytes of RAM. Consequently
it is limited to providing low-level primitives for use by software running on
the more powerful TrustZone processor secure environment. The Titan M chip
stores rollback counters used by Android’s verified boot functionality, and key
material for the Android Strongbox keystore, a hardened version of the pre-
vious processor secure environment-based keystore. In addition, Titan M is
hardwired to the Pixel’s side buttons, providing a trusted, unforgeable path
to button presses by users. This functionality is exposed to third-party apps
that rely on user interaction to confirm a transaction, giving a higher level of
assurance that the user, and not malware, has confirmed the transaction.

While Apple’s SEP and Google’s Titan-M are custom hardware solutions
designed to meet the needs of specific operating systems, a logical next step for
the development of multi-TEE architectures is the addition of such functional-
ity to general purpose SoCs. Qualcomm secure processing unit (SPU) [215] is
an on-SoC embedded secure element available in Qualcomm hardware starting
from from the Snapdragon 855 SoC. Integration on-glssoc means that the SPU
is fabricated on the same silicon die as the main processor. This has two bene-
fits compared to a discrete security chip such as the Titan M, while still being
isolated from the main processor: 1) reduced bill of materials cost for OEMs,

68 CHAPTER 5. HARDWARE-ASSISTED ISOLATION MECHANISMS

and 2) a small advantage in terms of power efficiency. The SPU can replace
Titan M on Android devices as the security element protecting cryptographic
keys placed in Android’s Strongbox keystore, but in addition can also function
as an integrated SIM (iSIM).

Chapter 6

Cryptographic hardware

As we have seen previously, many platform security building blocks like trusted
boot (Section 4.2.1), remote attestation (Section 2.4), and secure storage (Sec-
tion 4.3) rely on the use of cryptography. Hardware platforms provide crypto-
graphic functionality as a service to both the platform itself and applications,
in the form of secure storage for key material, acceleration of cryptographic
operations, and hardware random number generation.

Hardware support for cryptography is necessary for a number of reasons.
The first is performance. Cryptography implemented in software may require
a substantial share of the central processing unit’s (CPU) capabilities, and con-
sume significantly more power than an implementation using specialized hard-
ware. For example, an ARM Cortex-A9 core at 800 MHz (often used in embed-
ded devices such as screens and cameras) can encrypt only around 20 Mbytes/s
using the AES-256 algorithm if the whole CPU is dedicated to this task1, even
though modern mobile networks are capable of transferring hundreds of megabytes
per second. Moreover, many types of data such as video streams require signif-
icant additional processing after decryption. The second reason is that software-
based implementations are less secure: cryptographic keys reside in normal
memory and so are vulnerable to runtime attacks (discussed in Chapter 8),
or attacks against the random access memory (RAM) itself (discussed in Chap-
ter 10). As the operating system (OS) provides isolation between processes, any
compromise of it can lead to leakage of key material. Also, the software imple-
mentations of random number generators (RNGs) and storage mechanisms are
often vulnerable to differential power analysis and side channel attacks [44],
discussed in Chapter 10. These issues can be avoided by implementing cryp-
tographic primitives atop purpose-built hardware.

Cryptographic libraries normally provide plugin mechanisms so that appli-
cations can take advantage of cryptographic accelerators and hardware-protected
data stores without hardware-specific changes.

1https://www.design-reuse.com/articles/36013/cryptography-hardware-platform-for-
socs.html

69

70 CHAPTER 6. CRYPTOGRAPHIC HARDWARE

6.1 Cryptographic modules

Hardware-based cryptographic modules can improve performance and secu-
rity. As symmetric cryptographic operations such as bulk data encryption and
decryption widely outnumber asymmetric operations such as key establish-
ment and digital signing, symmetric cryptography is the most common target
of hardware acceleration, whereas both symmetric and asymmetric operations
benefit from hardware-backed isolation mechanisms.

Hardware assistance need not necessarily occur at the level of an entire
cryptographic primitive, such as encipherment of a block or the signing of a
chunk of data. Vendors often choose to accelerate only the most computation-
ally intensive sub-components of an algorithm, such as multi-precision modu-
lar exponentiation. This saves valuable space in the processor design and cuts
down on design costs. In practice, this means that the overall cryptographic
primitive may remain software driven, and some pre-processing such as data
origin verification or the initialization of key material takes place in normal
software.

The extent to which a cryptographic module’s configuration is exposed to
the software using it will influence the overall level of security that the mod-
ule can provide. At one end of the spectrum, traditional hardware security
modules (HSMs) expose little of their internal state. For example, in the cryp-
tographic module for Intel vPro Platform Security Chipset, keys for encryption
and message authentication are directly loaded from internal secure storage
to secure registers, and are not visible to any software or firmware. Opera-
tions such as Advanced Encryption Standard (AES), Secure Hash Algorithm
256 (SHA-256), Secure Hash Algorithm 1 (SHA-1) and large-number arithmetic
are performed by the Converged Security and Manageability Engine (CSME)
hardware block [36]. This prevents compromised software from obtaining raw
key material.

There are a number of ways in which system on chip (SoC) designers im-
plement hardware acceleration:
Special instructions for cryptographic operations: In this case, the CPU pro-
vides instructions that perform all or part of a cryptographic operation. This
is convenient from a backwards-compatibility point of view, as there are no
shared resources that need to be managed by the operating system.

For example, ARMV8-A (Cortex A53/A57) and newer include a single-
instruction multiple-data (SIMD) and floating-point unit that provides such
instructions [21].

Similarly, Intel processors since 2010 include the Advanced Encryption Stan-
dard New Instructions (AES-NI) [265] extension to perform AES algorithm
rounds and key expansion [21].
Cryptographic modules packaged inside the main processor: Qualcomm’s
secure processing unit (SPU) hosts a cryptographic subsystem (the cryptographic
management unit (CMU)) providing hardware blocks for accelerating crypto-
graphic operations. Supported operations include hashes, block ciphers, and
asymmetric cryptographic operations for Rivest-Shamir-Adleman (RSA) and

6.2. RANDOM NUMBER GENERATORS 71

elliptic-curve cryptography (ECC) [216]as well as a hardware key store [215].
Similarly, ARM provides the CryptoCell-300 and CryptoCell-700 families of
cryptographic accelerators as off-the-shelf blocks that can be integrated into
processor designs [231]. The CryptoCell-700 family integrates with ARM Trust-
Zone to provide a root-of-trust (RoT), cryptographic accelerator, and a hard-
ware key store. This tight integration is useful for access control, e.g. to provide
for encryption keys that can be used only by secure-world software [31]. ARM
CryptoCell-312P is targeted more for low-power and small-area designs and
comes with security enhancements to protect against side channel attacks [232],
for example nRF610 system in package2.
Cryptographic modules packaged separately into a security co-processor: This
approach is used by the Offload Cryptography Subsystem (OCS) module in the
CSME subsystem [36, 135], and Google’s Titan M. Titan M has built-in hard-
ware accelerators that can be initialized with keys provided by firmware or
with device-specific and hardware-bound keys generated by the Titan M’s Key
Manager module [188]. Similarly Intel’s Management Engine (ME) contains
accelerators, as well as a hardware key store that can load keys directly from
storage to internal registers for AES or HMAC operations [36]. Apple’s Se-
cure Enclave Processor (SEP) provides cryptographic acceleration, but is also
integrated with the direct memory access (DMA) path between storage and
main memory, so that the SEP can perform highly efficient disk encryption [11]
without exposing the encryption keys to the main CPU.

In CPU designs where cryptographic accelerators are shared, the corre-
sponding hardware and software stacks must be engineered to avoid concur-
rency issues and race conditions. These may lead to leakage of keys or crypto-
graphically sensitive data if software designs do not provide proper separation
under all circumstances [24].

The Federal Information Processing Standard 140-2 (FIPS 140-2) standard
provides guidelines for development of hardware cryptographic modules. Mod-
ules can be certified at one of several qualitative levels ranging from one (the
least secure) to four (the most secure) [101]. The fourth level requires co-
processors with tamper-resistance and the ability to self-erase if attacks are
noticed. For example, Qualcomms’s Snapdragon Cryptographic module and
ARM’s Cryptocell 712 and 713 are certifiable to FIPS 140-2 [233] 3.

6.2 Random number generators

In addition to cryptographic operations themselves, random number gener-
ation is essential for cryptography. However, secure and reliable sources of
randomness are difficult to obtain in digital systems, which are highly deter-
ministic. It is therefore common for a processor to include a hardware RNG;

2https://community.arm.com/developer/ip-products/processors/trustzone-for-armv8-
m/b/blog/posts/nordic-announce-first-cortex-m33-based-chip-with-trustzone

3https://www.qualcomm.com/news/onq/2014/11/07/cryptographic-module-snapdragon-
805-fips-140-2-certified

https://www.qualcomm.com/news/onq/2014/11/07/cryptographic-module-snapdragon-805-fips-140-2-certified
https://www.qualcomm.com/news/onq/2014/11/07/cryptographic-module-snapdragon-805-fips-140-2-certified

72 CHAPTER 6. CRYPTOGRAPHIC HARDWARE

010110001111001011001011000010
01101100000100010111100110110010
0100110101000101010011001100100001
1000011101101010011000101100111000
0101110110101100000100100001001000
1011111011011001001101100001010111
0101010101010011101010000100010101
001101010001110000011100110001
11000000000001001011111111001
1010010100010110010010

Physical source

of randomness

Raw random bits

(potentially correlated)

dc f8 d9 bf 42 3d 53 6d
d2 8a 91 4e 43 bf a3 0a

Processed entropy

(uncorrelated)

Digitization

Post-processing

Figure 6.1: A physical noise source of noise is digitized and post-processed to
provide a source of high-entropy random values.

the use of a hardware implementation allows its designers access to stochastic
physical phenomena such as electronic noise.

Even if the system has the ability to monitor a noisy analog source like ther-
mal noise [255], atmospheric noise [136, 86], hard disk seek timing [255], mouse
movement [274] or radioactive decay [267], the noise in such processes is often
strongly autocorrelated. The quality of random number generation is critical
to cryptographic security; e.g. the Digital Signature Algorithm (DSA) and the
Elliptic Curve Digital Signature Algorithm (ECDSA) signature algorithms are
particularly sensitive to the quality of the random number generation, allow-
ing full recovery of the private key when even a few bits of randomness are
known [197, 196]. Therefore, random number generation typically happens in
two phases: 1) generation, and 2) refinement, as illustrated in Figure 6.1.

In the second phase, raw random data is postprocessed to remove bit-to-
bit correlations and other imperfections, producing a high-quality random bit-
stream. The post-processing step is also important to protect against fault-
injection attacks against the physical source of randomness [20].

The random output is then used for key generation, for generating unique
identifiers or secrets that will be provisioned into the device during manu-
facture, nonces, initial counter values, and challenges for challenge-response
authentication [195], among other cryptographic uses.

Testing and validating random number generator implementations for their
security properties is a difficult mathematical endeavor. Several international
and national standards have been written to support such evaluations, e.g.,
NIST SP800-90b [255], ISO 18031 [144], and BSI AIS-31 [69].

In some cases, certification against these standards results in the publication
of information on the design of cryptographic systems. An example of this
in a mobile chipset is is the Qualcomm SPU [216], which takes advantage of
electronic noise that causes electronic oscillators to drift apart from each other,
allowing their values to be combined to produce a stream of random output.

6.2. RANDOM NUMBER GENERATORS 73

This output is post-processed using a pseudorandom number generator [45]
to produce the final output for use by software.

74 CHAPTER 6. CRYPTOGRAPHIC HARDWARE

Chapter 7

Run-time protection
mechanisms

On mobile platforms applications are often strongly isolated within their own
sandboxes (Chapter 3) and written in memory safe languages such as Kotlin
for Android [126] or Swift for iOS devices [14]. Nonetheless, both the plat-
form itself and various application components are written in “low-level” lan-
guages such as C/C++, that make them vulnerable to memory safety errors.
To address this, the research literature has since the late 90s been rife with
various approaches to address security vulnerabilities stemming from mem-
ory errors. A typical approach is to retrofit programs written in C/C++ with
mechanisms that prevent memory errors or their exploitation. Such schemes
range from approaches that only prevent some memory errors, such as stack
canaries that detect out-of-bounds memory writes on the stack [84], to mitiga-
tion techniques that prevent specific exploitation techniques, e.g. control-flow
integrity (CFI) solutions that prevent code-reuse attacks [1]. A notable early
success story is the widespread deployment of WˆX memory policies that pre-
vent an attacker from directly injecting new code into the executable memory
space of a program [185, 206]. Unfortunately, the deployment of other compre-
hensive run-time protection mechanisms has been limited due to large perfor-
mance overheads or compatibility issues. Consequently, many software-only
protection schemes—for instance, sanitizers such as Address Sanitizer [234]—
are only used during development, in order to detect (and correct) memory
safety violations during testing. This is poised to change with the recent influx
of hardware-assisted memory safety primitives geared towards efficient real-
ization of protection schemes in consumer hardware. One example is the ARM
pointer authentication that is deployed in all recent Apple devices [13]). These
should be efficient enough to be deployed in production. We will next look
at various existing and upcoming hardware primitives for run-time memory
protection.

75

76 CHAPTER 7. RUN-TIME PROTECTION MECHANISMS

7.1 Intel 64 architecture

The Intel 64 architecture has introduced two major run-time protection exten-
sions in recent years: Intel Memory-Protection Extension (MPX) and Control-
flow Enforcement Technology (CET). First, we will discuss Intel MPX, which
was introduced in the Skylake architecture in 2015 and is one of the first run-
time memory protection extensions in contemporary CPUs. MPX prevents
memory safety issues by providing new instructions for run-time detection
of buffer overflows and other spatial memory errors in legacy C/C++ pro-
grams. CET is narrower in scope, and specifically addresses code reuse attacks
(Section 8.3) by providing CFI [1]. Although static (compile-time) CFI poli-
cies are not exact and can be circumvented [72], they are well understood and
are applicable to legacy software with minimal impact on performance and
compatibility. While CET is only now being deployed in the Tiger Lake archi-
tecture [162], the specification was released already in 2016. CET is supported
by both the Windows and GNU/Linux operating systems (OSs). We will next
explore these two architectures in more detail.

7.1.1 Intel Memory-Protection Extension

Intel MPX provides hardware-assisted instrumentation to detect spatial mem-
ory errors. Buffer overflows, and spatial memory errors in general, are a preva-
lent security issue in programs written in C/C++ [250]. The research liter-
ature has proposed several approaches for mitigating these issues by intro-
ducing run-time bounds checking for pointers. The approaches either lever-
age fat pointers, that include information about the bounds of pointers in the
pointers themselves, or store bounds information separately from the point-
ers. While fat pointer schemes can be efficient, they typically require changes
to the pointer layout and size in order to accommodate the included bounds
information. The changed layout can cause compatibility issues, for instance
with pointer arithmetic, or break assumptions on the memory layout of struc-
tures. MPX takes the latter option and stores bounds information separately
and thus avoids compatibility issues inherent to fat pointers.

Prior schemes implemented in software—e.g. Baggy Bounds Checking [3]
and SoftBound [193]—suffer from performance issues due to slow bounds lookup.
MPX mitigates the overhead of the lookup by providing dedicated instructions
for storing and retrieving pointer bounds. The bounds access is accelerated by
a table walk performed in microcode, similar to the virtual memory page ta-
ble walk used by the processor’s memory management facilities. In addition,
MPX provides new registers for storing bounds information and instructions
for checking pointers against the bounds information in those registers.

The store and load instructions for bounds information use a two-level ad-
dressing scheme (Figure 7.1) based on a pointer’s storage address (i.e. the ad-
dress at which the pointer itself is stored, not the pointed-to address). The first
lookup table is the Bound Directory (BD) which is used to lookup a Bound
Table (BT) that is then the index needed to fetch the correct entry. On 64-bit

7.1. INTEL 64 ARCHITECTURE 77

BNDCFGSx

2GB bound directory

pointer to bound table

pointer

4MB bound table

256-bit entry pointer

upper boundlower bound

reserved

3-2021-47

Figure 7.1: MPX bounds metadata addressing in 64-bit mode.

systems the BD is 2GB in size, whereas each individual BT is 4MB. Reserv-
ing physical memory for these is unwieldy, and so, MPX supports on-demand
memory mapping by the OS. Whenever a memory page of the BD or a BT is
first accessed, it will cause a specific fault, that allows the OS kernel to step
in, map the necessary memory, and then resume process execution. While this
approach is feasible in user space, it significantly hinders the use of MPX in
environments that cannot handle page faults, e.g. the kernel itself [220].

Similarly to the other hardware extensions discussed in this chapter, MPX
is used by the compiler instrumenting a program with explicit instructions for
manipulating and checking bounds. Compiler support for MPX was intro-
duced in GCC v5.0, but was later dropped in v9.1 [105]. In addition to bounds
store, load, and check instructions, the compiler must also allocate registers
for storing the bounds for pointers in registers. The calling convention is then
modified to propagate the bounds of pointer function arguments by using the
new bounds registers. Many allocation-based schemes cannot narrow bounds,
that is, create bounds to a smaller portion of an allocation. This can lead to
security issues by allowing within-allocation memory corruption [108]. In con-
trast, MPX is pointer based and does allow bounds narrowing. However, ag-
gressive bounds narrowing is incompatible with common programming pat-
ters, such as iterators and retrieving a pointer to the enclosing structure from a
pointer to an element of the structure. Consequently, narrowing was sparsely
deployed in the GCC MPX instrumentation.

As indicated by the dropped GCC support, Intel has deprecated MPX [251].
The Linux kernel followed suit with the removal of MPX support in v5.6 [163].
This is likely due to multiple factors, including compatibility and performance
issues [201]. As reported by [201], MPX is outperformed by the software-only
AddressSanitizer (although direct comparison is problematic in that, in con-
trast to MPX, AddressSanitizer is allocation-based and does not support nar-
rowing but does detect use-after-free errors). The metadata storage scheme
of MPX can, depending on the program, incur substantial memory overhead;
increasing memory consumption by 100% on average. In order to avoid this
overhead, proposed uses of MPX in research literature typically do not lever-
age the built-in bounds storage but only use the MPX registers and check in-

78 CHAPTER 7. RUN-TIME PROTECTION MECHANISMS

structions. For instance, SGXBounds [158] provides bounds checking inside
Software Guard Extensions (SGX) enclaves (Section 5.2.1). The smaller address
space of an enclave allows the bounds to be encoded in the higher bits of point-
ers without increasing pointer size. Other projects use MPX for coarse-grained
enforcement, e.g. to provide in-process memory isolation [155], to accelerate
CFI [189], or to realize execute-only memory [212].

7.1.2 Intel Control-flow Enforcement Technology

Intel CET provides hardware-assisted control-flow integrity [141] for mitigat-
ing control-flow hijacking attacks. CET consists of two mechanisms: a hardware-
protected shadow stack that securely stores return addresses, and Indirect Branch
Tracking (IBT) that constrains the control-flow of forward branches. In contrast
to MPX, CET—and CFI in general—does not attempt to address the underlying
memory error, instead it restricts how control data (such as corrupted function
pointers) can be used at run-time. First, the shadow stack prevents an attacker
from altering function returns by modifying the unprotected return address
on the program stack. Second, IBT provides coarse grained CFI to ensure that
function calls or jumps always branch to valid addresses. This ensures that
function calls always target valid function entry points, thus limiting the util-
ity of attacks that alter code pointers. These defenses significantly limit an
adversary’s capability to exploit memory errors to achieve their goal.

The CET shadow stack works by adding a new attribute to memory pages
that identifies shadow stack pages and enables the memory management hard-
ware to mediate accesses to those pages. Any explicit access of shadow stack
pages is prohibited. Instead, call and return instructions implicitly write and
read it via a new shadow stack pointer (SSP) register. When CET is enabled, a
function call not only pushes the return address to the normal stack, but also
to the shadow stack pointed-to by the SSP. Subsequently, as a return is exe-
cuted, the hardware loads the return address from both stacks, and in case the
addresses differ, issues a control protection exception (which indicates that the
return address has been corrupted).

IBT is implemented as a state machine with two states (Figure 7.2). It starts
in the IDLE state until it encounters a jump or call instruction and sets the
state to WAIT_FOR_ENDBRANCH. To use IBT, the program must have been in-
strumented such that any valid jump or call targets—such as function entry
points—are marked with the endbranch end branch instruction. When an end
branch instruction is executed in the wait state, the state is reset back to idle.
Any other instruction executed in the wait state causes a control protection
exception that indicates an invalid control-flow transfer. While not included
in the simplified state machine, IBT also allows the feature to be disabled or
suppressed, for instance to support legacy code.

The GCC compiler introduced support for CET shadow stacks in version
8 [122, Section 3.18.46]. At the time of writing, Microsoft is introducing CET in
the Windows operating system via hardware-enforced stack protection [167].
Similarly, many Linux distributions already include CET support, and patches

7.2. ARMV8-A ARCHITECTURE 79

any other

IDLE
WAIT_FOR_
ENDBRANCH

jmp or call

endbranch

any other

#CP exception

Figure 7.2: Intel CET IBT state machine.

are being reviewed for the mainline Linux kernel [268]. Hardware support for
CET was deployed in the Intel Tiger Lake architecture in October 2020 [162]
and AMD Zen 3 since November 2021 [2].

7.2 ARMv8-A architecture

Similar to Intel MPX and CET, ARM provides Memory Tagging Extension
(MTE) that targets memory safety itself, and pointer authentication and Branch
Target Identification (BTI) that addresses CFI. The ARMv8.3-A architecture
first introduced pointer authentication that allows “signing” and verifying point-
ers, in practice enforcing CFI by protecting the integrity of function pointers
and return addresses when stored in memory. The BTI extension introduced in
ARMv8.5-A, provides a CFI mechanism similar to the IBT feature of Intel CET.
Meanwhile, ARMv8.5 MTE uses memory tagging to allow efficient detection of
both temporal and spatial memory errors. While this hardware support is still
not widely deployed, these extensions have gained traction on iOS and recent
Apple system on chips (SoCs) supporting pointer authentication and Google
working on supporting these extensions on the Android platform.

7.2.1 ARMv8.3 pointer authentication

As discussed in Section 7.1.2, pointers are an attractive target in run-time at-
tacks because they can allow exploits to hijack the normal operation of a vul-
nerable program, including enabling the execution of arbitrary malicious code.
Memory-safety mechanisms, such as Intel MPX, try to prevent memory er-
rors from happening, and mitigation techniques such as Intel CET mitigate
the exploitation of corrupted pointers. Another approach is to try and deter-
mine whether a pointer has been corrupted before it is used. The ARM pointer
authentication extension, available in ARMv8.3-A SoCs and later, adopts this
approach by providing hardware primitives for signing and verifying point-
ers [214, 21]. This allows protected systems to sign pointers before storing them
in memory, where they might be corrupted by an attacker, and then verify the
pointers before they are subsequently used. The idea of cryptographically pro-

80 CHAPTER 7. RUN-TIME PROTECTION MECHANISMS

64-bit pointer

tag / PAC
(8 bits)

virtual address
(VA_SIZE bits)

PAC
(3-23 bits)

Figure 7.3: The PAC is stored in the sign-extension bits of a pointer.

tecting pointers is not new in research, in particular different software-based
encoding or masking approaches have been proposed for protecting function
return addresses [213]. However, with hardware support, pointer authentica-
tion can typically offer better performance and security. A more recent precur-
sor is Cryptographic CFI, which realizes a scheme similar to pointer authenti-
cation using AES acceleration on Intel systems to generate message authenti-
cation codes (MACs) [176].1

Pointer authentication “signs” pointers using a tweakable MAC to gener-
ate a short MAC—called the pointer authentication code (PAC)—and embeds
it in the sign-extension bits of the pointer itself (Figure 7.3). Depending on sys-
tem configuration, specifically the size of the virtual address (VA) space and
use of pointer tagging, this allows a MAC ranging from 3 to 31 bits in size. A
typical 64-bit ARM Linux configuration would use a 16-bit PAC. The PAC is
calculated based on the pointer’s virtual address, a hardware-protected 128-bit
key, and an application defined 64-bit modifier. The choice of MAC algorithm is
implementation defined, with the QARMA algorithm by Qualcomm being one
possibility. The algorithm is realized in hardware and can be designed for ded-
icated pointer authentication use. For instance, the QARMA algorithm is opti-
mized for hardware implementation and a pointer authentication operation re-
alized with it is expected to complete in four cycles on a 1.2GHz core [37]. This
efficiency will likely allow the security mechanism to be used outside testing
environments, and indeed, the Apple A-series SoCs starting from A12 support
pointer authentication [13].

Pointer authentication use

The pointer authentication extension provides a set of key registers to hold the
pointer authentication keys, and a set of instructions for signing and verifying
pointers. A common set of key registers are shared between all exception levels
(ELs), but accesses to key registers can be configured to trap into a higher ex-
ception level to facilitate key management across different protection domains.
Consequently, the firmware must configure pointer authentication to allow de-
sired use. For instance, in order to allow the OS kernel to manage keys for user-
space processes, pointer authentication must be configured to allow access to
key registers in EL1. In order to use pointer authentication, an application is
then instrumented with pointer authentication instructions to sign and verify

1While [176] mention the possibility of embedding the MAC into the pointer itself, their actual
implementation elects to use a separate hash-table to store the MACs. This allows longer MACs
without modifying pointer layout.

7.2. ARMV8-A ARCHITECTURE 81

pointers where needed. This approach is quite flexible and allows different
protection schemes to be implemented by altering how the 64-bit modifier is
assigned to pointers (e.g. modifiers based on pointer type [166] or pointer stor-
age address [87]).

Pointer authentication use in user space has been supported by the Linux
kernel since v5.0 [223], with initial support for protecting the kernel itself in-
troduced in v5.7 [175]. The GCC 9.2 and Clang 9.0 (and later) compilers sup-
port the use of pointer authentication to sign function return addresses [104,
77]. The Apple ecosystem, starting with Xcode 10.1, has also started to roll out
support for using pointer authentication to protect function pointers in iOS
applications [13]. However, adoption, in particular outside relatively closed
ecosystems such as iOS, is challenging because pointer signing breaks applica-
tion binary interface (ABI) compatibility if applied beyond the local scope by
instrumenting pointers other than return addresses. Nonetheless, support for
ABI versioning and other mechanisms are currently planned, to accommodate
more widespread use of pointer authentication in heterogeneous systems [56].

ARMv8.6 pointer authentication extensions

On successful PAC verification, the PAC bits are cleared from the pointer, al-
lowing it to be used. This is necessary as the memory management unit (MMU)
expects the PAC bits to be sign-extended, and will issue a fault when translat-
ing a malformed pointer. Pointer authentication verification failures leverage
this to detect corrupted pointers without immediately raising a fault. Instead,
on failure, the hardware first clears the PAC bits and only then flips a predeter-
mined bit to ensure that the pointer cannot be used. Signing works similarly,
pointer authentication always first writes the correct PAC into the pointer, and
only then checks whether the input pointer was malformed, and if so, flips a
single bit to ensure the resulting signed pointer fails verification. Unfortunately
this allows an attacker to generate arbitrary signed pointers when a verification
is followed by a signing without intermediate use of the pointer [40].

To address this vulnerability, ARMv8.6-A introduces two enhancements to
pointer authentication: PAuth2 and FPAC [245]. First, the PAuth2 feature mod-
ifies the scheme for embedding PAC by replacing the overwriting and clearing
of the PAC with a exclusive-or operation. With PAuth2, a failed verification
will thus cause an incorrect PAC to be generated, which is then exclusive-ORed
into the PAC bits of the corrupted pointers, resulting in a garbled PAC. Subse-
quent signing first generates the correct PAC for the corrupted pointer but then
exclusive-ORs it into the now garbled PAC bits, thus ensuring that the pointer
cannot be used. Second, the FPAC feature allows the verification instructions
to be configured such that they immediately fault on verification failure. This
not only prevents the attack described above, but also helps debugging by en-
suring that authentication failures cause an immediate effect.

82 CHAPTER 7. RUN-TIME PROTECTION MECHANISMS

0b0001 A

pointers tag memory

0b0010 B

0b1111 bad

0b0001

0b0001

0b0010

char A[20]

char B[16]

normal memory

Figure 7.4: MTE provides a lock-and-key mechanism checks that pointers ac-
cessing tagged memory have an address tag that matches the allocation tag of
each accessed 16-byte memory granule.

7.2.2 ARMv8.5 Memory Tagging Extension

Memory tagging has been around for various purposes since the 1970s, e.g. in
the Burroughs machine that used memory tags to implement typed memory [159].
Recently, ARMv8.5 MTE introduces memory tagging for run-time memory
safety by realizing a “lock and key” type scheme for memory accesses [21]. Us-
ing MTE, memory can be marked with a 4-bit allocation tag such that any checked
access of the memory must be performed with an address marked with the cor-
responding address tag (Figure 7.4). Similar to pointer authentication, tags are
embedded into pointers. Consequently, the use of MTE decreases the possible
PAC size by one byte. MTE allows probabilistic detection and prevention of
both spatial and temporal memory errors [235]. By assigning a random tag
to each memory allocation an out-of-bounds or use-after-free memory derefer-
ence has only a 16−1 ≈ 6% probability of succeeding. This can allow efficient
error detection both during development and in deployed applications [23].

Similar to the pointer authentication extensions, MTE does not automati-
cally protect programs. Instead, a protected program must be instrumented
with added MTE instructions to tag memory and pointers where needed. MTE
provides new instructions for manipulating address tags in pointers, includ-
ing an instruction for generating random address tags from a subset of the 16
possible tags. Other instructions can then be used to write allocation tags into
memory based on the tag in given input pointers. Stack variables, for instance,
can thus be conveniently tagged by generating a first random tag and then
incrementing the tag for each subsequent variable stored in a stack-frame slot.

Allocation tags must be explicitly set and always apply to a naturally aligned
16-byte granule. The alignment and size restrictions can necessitate changes to
program memory layout, e.g. that variables stored in tagged memory always
occupy at least 16 bytes irrespective of actual variable size. A naive approach
could thus result in significant memory overhead; however, in practice MTE
can be combined with static analysis to decrease unnecessary coloring and
thus decrease the overhead [244]. In practice, MTE also requires support from
memory allocators to tag dynamic allocations, with support being made avail-
able in the Scudo allocator of LLVM [170]. At present, MTE is supported by

7.3. CHERI 83

Clang compiler through hardware-assisted AddressSanitizer, HWASAN [81].
It is supported on the Android platform for both testing through HWASAN [8]
and as a mitigation in the Scudo memory allocator [9].

7.2.3 ARMv8.5 Branch Target Identification

The BTI extension for ARMv8.5-A realizes a coarse-grained forward-edge CFI
scheme [21] similar to Intel CET’s IBT (Section 7.1.2). The scheme can be selec-
tively enforced by marking specific memory pages with the GP flag to indicate
that they are guarded pages. It adds the new bti instruction that can be used
to mark valid targets for indirect branch instructions. Whenever an indirect
branch instruction with link is executed (e.g. a call using a function pointer),
the processor state register PSTATE.BTYPE flag will be set to indicate the type
of branch instruction. Similarly, the state register is also set whenever jump or
other branch instruction is executed, but only within a guarded page. When
executing an instruction within a guarded page, the hardware faults unless the
executed instruction is a valid BTI target for the PSTATE.BTYPE.

BTI target types are encoded only in two bits, allowing only coarse grained
CFI. Only two separate CFI labels are used: c for function calls, j for branch
without link, or alternatively jc for either. For comparison, Intel’s IBT only
supports one class of valid branch targets. The hardware is designed to co-
operate with pointer authentication by recognizing pointer signing instruction
as valid targets, i.e. if pointer authentication is used to sign the return address
immediately on function entry, then no additional BTI instruction is needed.
Although BTI is relatively simple, it should effectively mitigate many attacks
by restricting the use of corrupted code pointers.

7.3 CHERI

The CHERI instruction set architecture (ISA) extension for architectural capa-
bilities [263, 261] have recently gained significant traction in the research com-
munity. Capability-based addressing replaces regular raw pointers with capa-
bilities that are integrity protected and include pointer bounds and additional
access permissions. In contrast to pointer-based schemes such as Intel MPX,
capabilities are unforgeable, and can only be created in specific circumstances
using dedicated instructions. Capability-based addressing was already used
in systems such as the IBM System/38 [137]. However, these systems typically
employed slow lookup tables for book-keeping. In contrast, CHERI, and the
M-Machine before it [74], encode all relevant information in the capability itself
and thereby forgo costly metadata lookup.

A CHERI capability is double the architecture pointer size, e.g. 128 bits on
64-bit systems. By exploiting redundancy in the information, the added bits are
sufficient to encode a type, permissions and both bounds (Figure 7.5). In addi-
tion, the hardware tracks a separate 1-bit capability tag for each 128-bit chunk
of memory to mark capabilities, and separate them from other data stored in

84 CHAPTER 7. RUN-TIME PROTECTION MECHANISMS

64-bit pointer

compressed boundsobject type permissions

1-bit validity tag

128-bit CHERI capability

Figure 7.5: The memory layout of a CHERI capability. In addition to the 128-
bit capability stored in memory, CHERI also maintains an unforgeable 1-bit
validity tag to mark valid capabilities.

memory. Most importantly, the capability tag cannot be set though normal
memory manipulation. Instead capability provenance is guaranteed by only
allowing their creation and modification through specific instructions. Fur-
thermore, capability derivation is guaranteed to be monotonically decreasing in
power, i.e. the permissions of a derived capability must always be a subset of
the source capability’s permissions and bounds. There are exceptions, such
as the initial capability that must be created at boot to allow access to system
resources. The CHERI type system also provides a mechanism for controlled
non-monotonicity, which can be used to realize CFI and compartmentalization.

Although capabilities do not directly address temporal memory errors, the
unforgeability and architectural nature of CHERI facilities efficient implemen-
tation of delayed re-allocation schemes. Specifically, because capabilities can be
unambiguously detected in memory, it is possible to accurately and efficiently
sweep the memory to verify the absence of references to freed memory and
invalidate any such references by invalidating the capability. Such a sweep can
be further optimized by minor architectural additions for detecting tag pres-
ence efficiently, e.g. new instructions for reading tags without reading the as-
sociated memory, and new page table attribute to identify pages that contain
capabilities [100].

The first published CHERI implementation was for the MIPS ISA [263].
However, CHERI was intentionally designed as an extension that can be ap-
plied to different architectures. It is also designed as a hybrid system, i.e. it can
be deployed in systems that mix raw pointers with capabilities. This is possi-
ble by providing a default data capability that is used when addressing via raw
pointers. A single process can thus be partially instrumented without necessar-
ily compromising the security of CHERI protected code sections. At present, a
CHERI implementation is also available for the 32- and 64-bit RISC-V architec-
tures [261]. Furthermore, the ARM Morello program is set to introduce CHERI
support for the ARMv8-A 32- and 64-bit architectures [30].

Part III

What can go wrong?

85

Chapter 8

Software-level attacks

In Part II, we discussed the design and implementation of hardware platform
security in contemporary mobile devices. In Part III, we will explore the poten-
tial vulnerabilities in, and attacks against hardware platform security in mobile
devices.

The traditional design of platform security architectures were based on the
assumption that hardware platform security is inviolable. But recent devel-
opments have questioned this implicit assumption. Although hardware plat-
form security is based on hardware-based building blocks such as TrustZone
extensions, their trusted computing base (TCB) still consists of software and
firmware components to a significant extent. Like any low-level software, such
components are vulnerable to software attacks such as those that exploit mem-
ory vulnerabilities. To date, these are, by far, the most frequent source of vul-
nerabilities found in hardware platform security architectures. In Chapter 7,
we already encountered some hardware security mechanisms intended to de-
fend against such software attacks. In this chapter, we will discuss different
types of software attacks against trusted execution environments (TEEs).

Although software vulnerabilities feature prominently in attacks, the un-
derlying hardware mechanisms may also come under attack. Modern hard-
ware architectures are complex. Their features can interact in unexpected ways
leading to new types of vulnerabilities. In Chapter 9, we will take a look at
different types of CPU-level attacks: these are attacks exploiting microarchitec-
tural hardware features such as caching, pipeline speculation, and out-of-order
execution. In this chapter, our focus will be on software attacks, i.e. attacks that
mostly leverage the imperfect interaction or protections between software and
memory. Such exploits can be mounted by a remote adversary and allow for
potentially widely applicable attacks.

In some settings, a local adversary may have physical access to the device.
In Chapter 10, we will consider these types of attacks. Examples include side-
channel attacks that require physical access (such as monitoring power con-
sumption or electromagnetic emissions from the device) as well as fault injec-
tion attacks, i.e. physically inducing faults in hardware components.

87

88 CHAPTER 8. SOFTWARE-LEVEL ATTACKS

8.1 Memory vulnerabilities

Modern mobile operating systems employ stringent isolation between appli-
cations to limit the reach of compromised or misbehaving programs and users.
However, software is also becoming increasingly complex and thus more prone
to software defects that might constitute vulnerabilities. Such vulnerabilities
can be broadly categorized into “high-level” design errors and “low-level”
memory vulnerabilities. The former materialize when the abstract program
logic or design is faulty regardless of specific implementations. The latter are
typically implementation-specific and materialize from the specific way a pro-
gram is realized as machine code for specific hardware. In this book we focus
on the latter; these are also the vulnerabilities that the defenses presented in
Chapter 7 address. We call such vulnerabilities memory vulnerabilities or mem-
ory errors.

These errors can further be divided into spatial and temporal memory er-
rors [250]. An example of the former category are the well-known buffer over-
flows. More generally, this category includes any memory error that violates
the memory boundaries of an object. The latter are errors that violate the life-
time of objects. An example of this category are use-after-free errors where a
pointer to an object is used after the object has been freed. Use-after-free errors
become exploitable when the underlying memory is reallocated such that the
pointer to the freed object points to, and allows modification of, another ob-
ject’s memory that has been allocated at the same memory address. A memory
vulnerability alone could be used to blindly launch a denial-of-service attack
by corrupting the internal state of the program and causing it to misbehave.
However, the attacker might have different goals, ranging from information
leaks—e.g. as in Heartbleed [249]—to system takeover.

8.2 Code-injection attacks

One of the early examples of exploits utilizing memory-vulnerabilities is the
Morris worm from 1988 [203, 243]. It exploited multiple vulnerabilities in Unix
utilities, including a spatial memory error in the fingerd daemon. The spe-
cific error was missing input validation that could be exploited to cause a stack
buffer overflow. The worm exploits this to inject executable code onto the pro-
gram stack and overwrite the function return address so that the program exe-
cutes the injected code upon return form the main function. Such injected code
is called shellcode because they often invoke a system call to launch an attacker-
controlled shell (typically /bin/sh).

To construct the payload, an attacker needs some knowledge of the target
memory layout. In the case of the Morris worm, the payload must be off-
set correctly such that the injected return address is written into the expected
memory location, in this case, the frame record of the target function. More-
over, the attacker must also know the shellcode’s memory address because
that is used as the injected function return address. At the time, this could

8.3. CODE-REUSE ATTACKS 89

be achieved by simply analyzing common binaries that would, at run-time,
be mapped to identical addresses in memory across different systems. Com-
monly deployed randomization defenses today, such as address-space layout
randomization (ASLR), may force the attacker to find another information leak
or resort to active probing in order to figure out the correct addresses and off-
set. While WˆX policies (Chapter 7) prevent most code-injection attacks, they
are still possible, for instance when attacking just-in-time compilers that must
write new executable code into memory [219]. Nonetheless, the prevalence of
defenses against code injection has motivated new advanced attack techniques
that can bypass WˆX.

8.3 Code-reuse attacks

Code-reuse attacks utilize pre-existing program code to achieve desired at-
tack behavior. The first example of such attacks was the return-into-libc attack
demonstrated in 1997 [209]. As the name suggests, the attack works by cor-
rupting the return address of a function such that it jumps into the beginning
of a libc function. By injecting the desired function arguments onto the stack,
this technique effectively calls the chosen function with attacker-controlled ar-
guments. The libc library is a useful target for code-reuse attacks because
it is often mapped into a known memory range and provides functions with
general-purpose functionality. Although return-into-libc is limited to existing
functions, it allows the injection of multiple bogus stack frames to induce a
sequence of attacker-controlled function calls. This technique has later been
expanded and refined into return-oriented programming (ROP) attacks.
Return-oriented programming: Introduced in 2003 [236], ROP is an advanced
code-reuse technique that allows more flexible attacks without being constrained
to only chaining calls to pre-existing functions. It is similar to return-into-libc,
but instead of functions it uses small program fragments—called gadgets—
consisting of only one or a few instructions. Each gadget ends in an indirect
branch instruction, typically a return, that is used to load the address of the
next attacker-chosen gadget. This allows the gadgets to be chained such that
they effectively form an alternate instruction set that the attacker can use to re-
alize desired functionality. In fact, ROP attacks exploiting gadgets in libc have
been shown to provide a set of gadgets that is expressive enough to support ar-
bitrary computation; often referred to as a Turing-complete set of instructions.

As with code-injection, randomization defenses can mitigate ROP attacks
by randomizing the run-time addresses of gadgets. However, techniques for
probing the memory layout of a victim process have been shown to be suffi-
cient to realize just-in-time ROP that can circumvent even run-time (re)randomization
by making gadget discovery part of the attack chain [242]. Return-address pro-
tection, such as Intel Control-flow Enforcement Technology (CET) or shadow
stacks (Section 7.1.2), can prevent return address corruption. But the same tech-
nique can be used by corrupting code pointers, such as plain function pointers
or virtual function tables [59]. While forward-edge control-flow integrity (CFI)

90 CHAPTER 8. SOFTWARE-LEVEL ATTACKS

schemes also protect function calls and jumps, they are often coarse-grained
and allow multiple targets for a given call site. Nonetheless, defenses like In-
tel CET (Section 7.1.2) and ARM pointer authentication (Section 7.2.1) that can
be used to enforce integrity of control flows, effectively mitigate code-reuse at-
tacks by restricting the availability of gadgets. The prevalence of such defenses
has prompted research into advanced data-only attacks.

8.4 Data-only attacks

Data-only attacks do not alter control-flow data such as function pointers or
return addresses. Regardless, they can still be leveraged to mount denial-of-
service attacks by corrupting the data of a program or to leak sensitive data.
A prominent contemporary data-leakage attack is the Heartbleed vulnerabil-
ity that utilized an over-read to leak sensitive program data [249]. Heartbleed
exploited TLS/DTLS heartbeat messages that cause the server to respond by
echoing a message back to the client. The vulnerable implementation relied
on a user supplied length-field that allowed an attacker to supply an incor-
rect length to cause the response to include uninitialized memory possibly still
containing sensitive data. This could be exploited to read up to 64 kilobytes
of unrelated server memory. Even without control over the over-read memory,
Heartbleed has been shown to enable leakage of confidential information such
as private keys.

Although data-only attacks do not directly manipulate control data, they
can influence the behavior of a program by altering the decision-making data
used by a program, for instance, by overwriting the current user ID or file
paths. Moreover, recent work on data-oriented programming (DOP) has shown
that data-only attacks are powerful enough to achieve Turing-complete ex-
ploitation similar to ROP [138]. This type of attack has begun to appear in the
wild, as demonstrated by the FORCEDENTRY exploit [49] against the iMes-
sage messaging application. Because no control-flow data is directly manipu-
lated, the individual control flows of the program remain within the control-
flow graph (CFG) and the attack remains unhindered by defenses such as
CFI. Demonstrated DOP attacks still depend on data-pointer manipulation
using memory vulnerabilities and can therefore be prevented using pointer-
protection schemes. Another insight is that current DOP attacks alter program
behavior in detectable ways, which can be leveraged for protection or attack
detection [80].

8.5 Attacks on TEEs

As with all software, implementations of trusted applications (TAs) or the TEE
operating system (OS) can exhibit software defects and architectural weak-
nesses that may lead to vulnerabilities. Recall that the rationale for TEE iso-
lation is to shield trusted code from malicious behavior by the rich execution

8.6. ATTACKS ON HARDWARE-ASSISTED MEMORY DEFENSES 91

environment (REE) or its applications. By isolating only the security-critical
functionality, the software implementation of the TEE can be kept relatively
small—compared to REE kernels that can consist of millions of lines of code—
allowing its correctness to be more easily verified. However, the codebases for
modern TEE implementations, especially in mobile devices using processor
secure environments such as ARM TrustZone, have grown in size to the point
were confidence in the correctness of code in the TCB is weakened [75]. This is
exemplified by a long history of critical implementation bugs in TEE software,
including:

• Input validation errors [221, 237, 48, 51, 53, 54], where an attacker exploits
undefined behavior in a TA, for example by a buffer overflow or use-
after-free.

• Confused-deputy vulnerabilities [172], where a client application (CA) abuses
the valid behavior of a TA in order to violate some security policy.

• Insecure software installation [46, 52], enabling loading of arbitrary soft-
ware, or the rollback of already patched TAs or the TEE OS version to a
previous, vulnerable version.

There are two reasons why TEEs are prime targets for software attacks:
Firstly, they expose a large attacks surface through REE interfaces [75]. Hard-
ening REE system services and kernel interfaces can help limit the exposure,
but ultimately TAs rely on their own input validation and that of the TEE OS
for protection against malicious inputs. Secondly, TEE software often lacks
defenses against run-time attacks [46, 237], which are commonplace for REE
OSs. This may be due to resource constraints within the TEE [199], or due
to inherent hardware limitations. For instance, in the first generation of Intel
SGX-capable processors, memory permissions cannot be changed after enclave
initialization [57]. This makes it difficult to combine countermeasures based
on address space randomization with policies for data execution prevention.
This limitation was lifted in the second generation Software Guard Extensions
(SGX) hardware [182].

8.6 Attacks on hardware-assisted memory defenses

Run-time memory-protection mechanisms are a promising step forward but
are not a panacea. Prior research has also shown many existing of defenses are
either incomplete or have theoretical limitations. Allocation based memory-
protection, such as ARM Memory Tagging Extension (MTE), can be worked
around by corrupting other memory objects within the same allocation [109].
Coarse-grained CFI mechanisms, such as Intel CET, prevent many attacks, but
still allow control-flow bending attacks that alters intended functionality while
adhering to the CFI policy [72]. Practical deployment and performance consid-
erations further limit defense effectiveness, even for hardware-assisted mech-

92 CHAPTER 8. SOFTWARE-LEVEL ATTACKS

anisms; for instance, Intel CET offers only coarse-grained CFI and ARM MTE
only supports 4-bit tags.

Phasing in new hardware to a disparate set of customers and devices is
also a slow process. Meanwhile, new features prompt research into attacks
that circumvent them. One recent example is the Project Zero attack that cir-
cumvent ARM pointer authentication [40]. The attack exploits the specifics of
how authentication failures are handled in order to realize a gadget for signing
arbitrary pointers. It can be partially prevented in software; ARM has since
updated the pointer authentication specification in ARM-A v8.6. Nonetheless,
this exemplifies a challenge of applying hardware-based mitigation: a new
hardware fix does not help already deployed hardware, and the generally slow
hardware update cycle means old, vulnerable, devices remain in use..

Theoretical limitations coupled with implementation-specific flaws indicate
that memory vulnerabilities will continue to be a problem for the foreseeable
future. Nonetheless, the increasingly sophisticated attacks indicate that run-
time protection mechanisms (Chapter 7) indeed make exploitation of mod-
ern systems more challenging. Controlled application ecosystems and use
of hardware-assisted isolation mechanisms (Chapter 5) also serve to restrict
the vulnerabilities that do occur. As such, although we might not be rid of
software-level attacks any time soon, there is an increasing range of tools and
mechanisms that allow the mitigation and management of associated risks.

Chapter 9

CPU-level attacks

In Chapter 8, we discussed attacks against vulnerable software. In this chapter
we will discuss attacks that take advantage of vulnerable hardware.

We consider two kinds of attack: side-channel attacks, where an attacker vi-
olates the confidentiality of a security boundary by examining the effect of the
victim code on shared resources, and fault-injection attacks, where an attacker
violates the integrity a victim behind a hardware-enforced security boundary.

9.1 Side-channel attacks

Side channel attacks take advantage of resources that are shared between mul-
tiple processes, allowing an attacker to make inferences about the state of other
processes beyond what is allowed by their defined interfaces. A side-channel
attack has two main stages: first, the data to be taken must find its way into the
shared resource. This may occur accidentally, or with some encouragement by
the attacker. Secondly, the attacker must have a way to read out the contents
of the shared resource in question. There may be more than one way to read
data from a given resource, providing increased bandwidth and accuracy by
taking advantage of features of particular conditions in which a side channel
may occur.

9.1.1 Cache-timing side channels

Cache-timing side channels allow an attacker to infer the memory access pat-
terns of a program; if this pattern is dependent on secret data, then it can lead
to a vulnerability. Cache-timing side channels have been a major concern for
implementations of the Advanced Encryption Standard (AES) encryption algo-
rithm, which was designed to be efficiently computed using table lookups [55].
The reliance on table lookups allows cache-timing attacks to determine the in-
dices that are looked up, which can then be used to infer the key.

93

94 CHAPTER 9. CPU-LEVEL ATTACKS

Central processing unit (CPU) caches are generally set-associative [204, p. 497].
Physical memory is divided into blocks, and the cache into sets of cache lines
that can each store a single block. The lowest-order bits of each physical ad-
dress provide an offset into a block; the next-lowest bits are used to associate
an address with a cache set. Then, when a block is loaded into the cache, the
cache selects a cache line from its associated set, and uses it to store a copy of
the block, along with a tag used to disambiguate it from other blocks assigned
to the same set.

Processes with separate address spaces can still share cache lines. As a re-
sult, memory access times can be used as a readout process for this side channel.
Loads from more-recently accessed memory address will complete faster, as
they can be loaded from caches nearer to the CPU.

The Prime+Probe attack [202] is based on the principle that, since blocks
from different processes map to the same cache sets, an attacker can detect
whether another process—the victim—accesses a given address by loading similarly-
aligned regions of their own memory, thereby filling the cache set correspond-
ing to the target address with their own data. Then, after the victim process
has run, the attacker reads back the same memory again. If the victim has not
accessed the target address, then this will be fast; otherwise, the attacker’s data
will have been evicted from the cache, and the load will be slow. This allows
the attacker to make inferences about the memory access pattern of the vic-
tim. Prime+Probe is not perfectly reliable, as the blocks used to probe a given
cache set can be evicted by loading any block associated with same cache set,
resulting in false-positives.

The Flush+Reload attack [266] works in the more restricted case where the
attacker shares a memory page with the victim. Then they can use the more
precise Flush+Reload cache-timing attack, which tests for the presence of a
specific block. In order to do this, the attacker and victim processes must access
the same physical address. This can occur if the same shared library is mapped
into both their memory spaces, or if pages are deduplicated by a hypervisor.
In this case the attacker can load from the same physical address as the victim,
and if this completes quickly, then this specific block is in the cache and must
definitely have been loaded. This is in contrast to Prime+Probe, which can
detect memory access only at the level of cache-sets rather than blocks.

While the above attacks were initially demonstrated on the desktop-centric
x86 architecture, later work has shown that the attacks can also be conducted
on a ARM architectures and mobile operating systems [168, 273]. Such attacks
have also been shown to be capable of leaking secrets from ARM TrustZone,
even when launched from a non-privileged Android application [271].

9.1.2 Transient execution vulnerabilities

Even where a program’s memory access patterns are not secret-dependent,
modern processors use speculative execution [204, p. 434], allowing execution
to continue while the CPU waits for inputs to arrive from uncompleted in-
structions or from distant banks of memory. When the CPU guesses wrongly

9.1. SIDE-CHANNEL ATTACKS 95

what the inputs will be, the speculative execution will be erroneous, and when
the inputs eventually arrive, the CPU will roll back the speculative execution
and start again with the correct inputs. Nevertheless, the speculative execu-
tion has microarchitectural side effects that are not rolled back. In particular,
speculatively-executed memory accesses affect the state of the cache, resulting
in a cache-timing side channel between the speculative and non-speculative
executions. If an attacker can trick the processor into speculatively executing
secret-dependent memory accesses, then they can extract secrets using one of
the previous attacks.

The Meltdown attack [169] takes advantage of the fact that kernel memory
was mapped into the process address space, and protected by memory access
control mechanisms. Intel CPUs would speculatively execute past a load from
kernel memory, allowing the instructions immediately following the load to
leak the secret data using a cache side-channel before the access control bits
are obtained and an exception is raised. A variation on Meltdown, known as
Foreshadow [71], uses the same underlying vulnerability to also read data from
Software Guard Extensions (SGX) enclaves.

Spectre [149] vulnerabilities rely on branch misprediction to create secret-
dependent side channels in software whose memory access pattern is normally
independent of all secret values.

One approach is to use speculative execution to bypass a bounds check.
An attacker may be able to obtain secret data through an apparently non-
vulnerable data-dependent memory access by means of a buffer over-read,
using speculative execution to ignore any bounds checks that prevent the over-
read from being executed non-speculatively.

Another method is for the attacker to poison the indirect branch predic-
tor by repeatedly jumping between appropriately aligned addresses in the at-
tacker’s address space. This will make the CPU speculatively jump to an arbi-
trary attacker-controlled address when it reaches the targeted branch instruc-
tion. These speculative mispredictions can be chained together to realize any
computation desired by the attacker, similarly to a return-oriented program-
ming (ROP) attack, described in Section 8.3.

The Load Value Injection attack [256] combines aspects of the Meltdown
and Spectre attacks. Whereas in a Meltdown attack, the attacker speculatively
loads data from the victim’s memory space, Load Value Injection reverses this,
tricking the victim into speculatively loading data belonging to the attacker.
This is then used to trick the victim into revealing secret data through a side
channel.

9.1.3 Mitigations

Cache-timing side channels are avoided by eliminating secret-dependent mem-
ory accesses. This means that not only must secret-dependent access data
always follow the same pattern, but the control flow must also follow the
same pattern so that instruction fetches do not reveal secret data. Some lan-
guages provide tools that can assist. For example, the HACL* formally-verified

96 CHAPTER 9. CPU-LEVEL ATTACKS

cryptographic library [276] defines a secure integer interface that prevents non-
constant-time operations and usage as an array index.

Trusted execution environments (TEEs) can also isolate the cache usage of
their trusted applications (TAs) from other applications. For example, the Sanc-
tum [83] TEE architecture flushes the per-core caches whenever a core transi-
tion from enclave mode to non-enclave mode takes place. Shared caches are
partitioned so that TAs have dedicated cache sets that are not shared with un-
trusted code, preventing the cache-timing attacks presented above.

More ‘forensic’ approaches have been suggested that attempt to detect the
microarchitectural behaviors characteristic of cache-timing attacks. CloudRadar [272]
uses CPU performance counters to identify the execution of cryptographic
code, and then attempts to correlate these events with anomalously large num-
bers of cache hits or misses that are indicative of a cache-timing attack against
cryptographic code.

9.2 Fault-injection attacks

Whereas a side-channel attack allows an attacker to infer state that they should
not be able to access through normal interfaces, a fault-injection attack allows
an attacker to modify state that they should be unable to modify through nor-
mal interfaces.

9.2.1 Rowhammer

Rowhammer [148] takes advantage of the electromagnetic coupling between
dynamic random access memory (DRAM) cells in high-density memory chips.
Each row of cells has a wordline that is used to activate it when a memory ac-
cess occurs. Repeatedly accessing two different rows causes the wordline to
be toggled high and low repeatedly, causing the charge in some adjacent cells
to leak more quickly than normal, to the point of flipping between DRAM re-
freshes. Rowhammer can be used across the TrustZone normal-/secure-world
boundary, and this has proven to be exploitable in practice [73].

9.2.2 CLKSCREW

The CLKSCREW [252] attack induces faults by using the the control that the
rich execution environment (REE) has over power-management functionality
to introduce glitches through the clock and power inputs. The attacker takes
advantage of the fact that different cores have independent voltage and fre-
quency domains, allowing software running on one core to introduce glitches
in another process without causing itself to fail. The effectiveness of this attack
was demonstrated by using it to extract AES keys from a TA, and to load a
self-signed TA.

9.2. FAULT-INJECTION ATTACKS 97

9.2.3 Mitigations

Fault-injection attacks can be mitigated in two main ways: first, by prevent-
ing the fault from being injected, and secondly, by making faults difficult or
impossible to exploit when they do occur.

Where the shared resource is a well-defined entity, fault-injection attacks
can be prevented with appropriate access control. For example, one defence
against Rowhammer attacks is to physically separate security domains from
one another, as in [65] or [61], which place a certain number of guard rows
between regions of memory used by software in each security domain, making
attacks less likely to succeed.

Error correction and other forms of redundancy can also be used to mit-
igate fault-injection attacks, since they force an attacker to correctly modify
several pieces of state simultaneously. One example is the use of error correct-
ing memory, which can detect and correct the random memory errors caused
by Rowhammer attacks. Another is to perform computations more than once
and compare the results, as suggested by [252]. An alternative to redundancy
is randomization, which aims to limit the probability that an attack will be suc-
cessful. For example, by inserting random loops of no-op instructions into the
program, the attacker can modify the timing such that a CLKSCREW attack
is unlikely to be correctly targeted, and therefore preventing reliable exploita-
tion.

98 CHAPTER 9. CPU-LEVEL ATTACKS

Chapter 10

Physical attacks

In Chapter 8 and Chapter 9, we showed how a potentially-remote attacker can
exploit vulnerabilities in both software and hardware. In this chapter, we will
show what more an attacker can achieve with physical access to the device.

An attacker with some level of physical access to a device is able to inter-
act with the device in ways that do not form part of a defined interface such
as a network protocol. This is necessary due to the tendency of designers to
isolate security elements such as subscriber identity modules (SIMs) and Titan-
M [50] in separate devices with a relatively small attack surface; this prevents
the CPU-level attacks from Chapter 9, forcing attackers to find new attack sur-
faces to exploit.

Some of these attacks are non-invasive—e.g., observing electromagnetic
emanations even at some distance from the device—while others are highly
invasive—e.g., applying laser pulses to the exposed circuitry of a chip.

We will characterize attacks along a spectrum of invasiveness:

• Non-invasive: The attack can be mounted without physically tampering
with the device in any way.

• Non-destructively invasive: The attack requires some physical tamper-
ing such as opening the device’s enclosure, but does not cause any per-
manent damage and allows the device to be returned to its original form.

• Physically-evident: The attack causes irreversible physical damage to the
device, and it is afterwards physically evident that an attack has taken
place.

• Destructive: The device is permanently disabled or degraded by the at-
tack.

99

100 CHAPTER 10. PHYSICAL ATTACKS

Figure 10.1: Illustration of a power trace of a modular exponentiation opera-
tion, adapted from [151].

10.1 Power analysis

Power analysis attacks uncover confidential information by analyzing a de-
vice’s power consumption pattern over time. Logic gates consume energy
while their transistors are in the process of switching, meaning that the op-
erations being executed by the device and the data being operated on have an
effect on power consumption.

Depending on where the power consumption is measured, such an attack
may be non-invasive—e.g. if the device runs from external power through a
line which can be tapped—or non-destructively invasive—e.g. if the attacker
needs to open up the device in order to gain access to the power rails of a
particular component of the device.

10.1.1 Simple power analysis

The power consumption of a device varies most noticeably according to the
type of operation that is taking place. By observing power consumption pat-
terns where instruction flow depends on data, attackers can identify which
branch has been taken at a given point in the program, allowing an attacker to
identify secret-dependent operations.

As an example of an operation that can be targeted by an simple power
analysis (SPA) attack, consider an implementation of the Rivest-Shamir-Adleman
(RSA) encryption and signing cryptosystem. It has decryption and signing op-
erations of the form

message ≡ ciphertextkey(mod n)

using a naïve implementation of the square-and-multiply algorithm [82, p. 956].
Careful observation of the power trace collected during the operation can yield
the secret key value. Figure 10.1 illustrates the power consumption patterns of
a hypothetical square-and-multiply operation, showing how each bit in the ex-
ponent can be reconstructed from the trace.

10.1. POWER ANALYSIS 101

A straightforward countermeasure against SPA attacks is to ensure that that
the same sequence of instructions will always be executed, no matter the values
of the data being processed. This normally incurs a performance cost, as it
requires that all possible branches to be computed every time. However, it is
not a perfect countermeasure, as the same instruction may consume different
amounts of energy when provided with different data.

An alternative is to take the opposite approach: rather than trying to elim-
inate all secret data from the power traces, a program can perform additional
random operations in order to create noise in the power trace, at the cost of
computational overhead. SPA attacks are practical only for large power vari-
ations or high quality traces, but not on noisy measurements [151]. This is
especially important for embedded devices like smart cards, that execute op-
erations sequentially and so are more vulnerable to SPA than devices with a
more advanced central processing unit (CPU) or ones based on an field pro-
grammable gate array (FPGA) [153].

10.1.2 Differential power analysis

Whereas SPA focuses on identifying computational characteristics in the shape
of an individual power trace, differential power analysis (DPA) uses the sta-
tistical properties of many traces in order to identify subtle fluctuations that,
within any individual trace, are overshadowed by noise and other measure-
ment errors [150]. This allows DPA to more easily detect data-dependent changes
in power consumption.

For example, in [150], the authors identify a function D that yields a bit
which will be correlated with another bit that is computed during a Data En-
cryption Standard (DES) encryption operation, if and only if a particular part
of the key has been guessed correctly. They then compute the difference be-
tween the average power traces when D yields the bit 0, and when D yields
the bit 1. Where the partial key is guessed incorrectly, these differences will ap-
proach zero as more traces are averaged. However, if the partial key is guessed
correctly, then these differential traces will contain spikes where the power con-
sumption traces depend on the computed value. This process can then be used
to undo the final round of the encryption operation, allowing a similar process
to be applied to another part of the key. This process is repeated until the whole
key is known.

In addition to the countermeasures described in Section 10.1.1, further mit-
igations are needed to protect against highly-sensitive DPA attacks. One such
technique is to systematically randomize sensitive data while it is being pro-
cessed. For example, algorithms can be implemented so that secret data is
masked with a random value during computation, and only unmasked after
the relevant computation has finished. An attacker who extracts intermediate
values of the computation using DPA will only obtain the useless masked val-
ues. This requires the adaptation of algorithms to work with masked input and
output values [151].

102 CHAPTER 10. PHYSICAL ATTACKS

10.2 Electromagnetic emissions

Electric currents produce magnetic fields. When these currents change with
time, an electromagnetic (EM) wave is produced, which can travel over a long
distance, or be conducted along a power cable or other output. When a de-
vice performs a computation, these waves can be detected, revealing informa-
tion on the computation and its data. Many EM eavesdropping attacks can be
conducted non-invasively, and unlike most of the other attacks presented in
this chapter, in some cases they can even be exploited from a distance without
physical access to the device.

Exploitation of unintended emissions has a long history, with the phenomenon
having been observed in cipher machine components during the Second World
War [60, p. 90], and having been actively exploited by the 1950s [264, p. 91] to
track radio receivers being operated by the Soviet Union in Britain.

This vulnerability first appeared in the open literature in the 1980s [157],
most famously by Van Eck’s demonstration of eavesdropping on computer
monitors from a distance of 50m [92]; the signal from the monitor was received
using an antenna, amplified, and combined with an artificial synchronization
signal that allowed the captured emissions to be viewed on a normal display.

One approach is to reduce the strength of the emitted signal either by elec-
tromagnetic shielding, or by increasing the distance between devices and po-
tential attackers [60, p. 91]; this can be achieved with static infrastructure with
fencing or other physical measures, or with shielding inside the device that
will reduce the available signal, and force the attacker to remove it, potentially
rendering the attack physically-evident.

The designer may also attempt to reduce the strength of the emitted sig-
nal. One such approach was to replace the fonts used to display sensitive text
with a low-pass filtered version that produced weaker emissions when dis-
played [157]. Careful hardware design can also reduce EM emissions. Asyn-
chronous hardware designs—which avoid the use of a component-wide com-
mon clock—and dual-rail logic—which represent each bit with two physical
values whose EM emissions will approximately cancel each other out [217]—
produce less emissions and so are less vulnerable.

10.3 Fault-injection attacks

Fault-injection attacks are active attacks in which an attacker operates a de-
vice under conditions that cause it to deviate from its normal operation. In
this way, transient faults during execution are introduced, to force the device
to leak sensitive data, alter its control flow, or produce incorrect computation
results. For example, an attacker can cause a fault during an RSA decryption
or signing operation in such a way that the result of the computation contains
information that can be used to recover the RSA private key [43]. Faults can be
caused by altering any of a wide variety of conditions, such as supply voltage,
clock frequency or quality, ambient temperature, or radiation [218]. Different

10.3. FAULT-INJECTION ATTACKS 103

approaches allow for different levels of precision in the faults that can be gen-
erated, but may also be more or less invasive and may require differing levels
of sophistication on the part of the attacker.

10.3.1 Glitching

One way to inject faults is to temporarily alter the voltage on a processor’s
power supply rail, or to prematurely flip the clock signal at a precisely-determined
time—this alteration is known as a glitch—so that the digital logic of the device
no longer functions correctly, causing spurious values to be placed into regis-
ters or other parts of the processor state [64]. A common approach is to target
a fault at a conditional jump or test instruction [43] with the intention of by-
passing an access control check. Such faults can in many cases be injected from
outside the device, making the attacks non-invasive, e.g., SIM cards rely on an
external source of power which can serve as an attack point. Other devices,
such as mobile phones, may not expose their clock or power supply rails out-
side the device, therefore requiring at least some level of disassembly and mod-
ification of the device before mounting a voltage glitching attack, thus making
the same attack at least non-destructively invasive in those devices.

These glitches can be produced in many different ways; perhaps the sim-
plest is to use a transistor connected between the power supply rail to be
glitched and ground; then, the transistor is switched on for a short period,
briefly reducing the power supply voltage to near zero. The voltage glitch
can then be further controlled by a FPGA device that manages the attack tim-
ing [64]. Commercial voltage-glitching tools are available, such as ChipWhis-
per 1, allowing these attacks to be performed without expert knowledge.

As a countermeasure, some embedded processors include a voltage regula-
tor that attempts to maintain the stability of the power supply, independently
of the input voltage [43]. Voltage regulation requires energy storage, normally
in the form of a capacitor. These cannot be easily incorporated into a chip, and
must be connected externally. This provides an opportunity for an attacker to
bypass the regulator by connecting the voltage glitch source to the capacitor
pin [64], but nevertheless prevents the attacker from carrying out the attack
noninvasively. On-chip clock generators can be used in the same way to pro-
tect against clock glitches.

Alternatively, these attacks can be mitigated through duplication [43], with
protected operations being executed multiple times in order to compare their
results, thereby allowing glitches to be detected.

10.3.2 Focussed fault injection

Semiconductors are sensitive to light and charged particles, which can be used
to introduce faults into a chip [43]. When a photon or ion hits a semiconductor
with sufficient energy, it can ionize a region of the chip [239]. This causes a

1https://www.newae.com/chipwhisperer

https://www.newae.com/chipwhisperer

104 CHAPTER 10. PHYSICAL ATTACKS

non-conducting transistor to conduct, which can flip the output of a gate or a
memory cell.

In order to exploit this phenomenon, it is necessary to precisely target a
burst of light or ions at a specific region of the chip. In one experiment [239],
this was achieved by directing a flash of light into the camera port of a semi-
conductor probing station set to 1500× magnification. Both a laser and white
light—such as from a flashbulb—can be used as a light source, but lasers can
produce a better-collimated beam that is more easily targeted. Best of all are
focused ion beams, which have a very short wavelength and so can be focused
on very small regions of the chip. The energy needed to induce a bit-flip de-
pends on what is being attacked: the trapped charge used to set the value of a
flash memory cell is much less than the charge that must be displaced in order
to flip a static RAM (SRAM) cell. This attack is highly invasive, and will likely
be physically-evident, as it is necessary to remove part of the packaging from
the chip in order to expose the die.

There are two main ways to defend against this attack: the first is to shield
sensitive regions of the die from external sources of light by covering them with
a metal layer. This can be defeated by attacking with infrared or X-ray light,
both of which possess some penetrating ability [239]. The other is to design
circuitry so that its security cannot be compromised with only a single fault,
and to include duplication and error-detection mechanisms that will allow the
chip to detect or correct faults once they have been introduced [239]. Similar
methods are also proposed as defenses against more the coarse-grained power
and clock glitching attacks described in Section 10.3.1.

10.4 Microscopy and probing attacks

The most invasive attacks involve destructive modification to device compo-
nents or even the dies of chips. For example, it is possible to remove metal
layers from a die by soaking it in hydrofluoric acid for several seconds [154],
thereby allowing photographs to be taken of different layers of the chip, com-
bined with depth measurements that can be taken using a confocal micro-
scope [187]. This allows much of the original design to be reconstructed. In
some cases, this reconstruction is sufficient for the attacker’s goals: for exam-
ple, programming some types of read-only memory (ROM) results in visible
changes to the structure of the chip, allowing data to be read out from micro-
scope images [79]. Publicly available tools can process these images to read
the data in the ROM [164]. Such attacks can be mitigated by choosing memory
technologies whose visible structure does not change after being written. For
example, antifuse memory does not visibly change after programming, unlike
eFuse memories whose broken metal links are clearly visible [79].

More advanced attacks can use microscopic probes to interact with the cir-
cuit electrically, to read out the contents of buses or insert faults directly [239].
Techniques such as bus encryption can provide some protection, but the data
must be decrypted somewhere in order to perform computation, and does not

10.4. MICROSCOPY AND PROBING ATTACKS 105

prevent an attacker from injecting faults. Another defence is to insert a ‘sensor
mesh’, one or more long space-filling wires that cover sensitive circuitry. If the
wire is broken by an attacker seeking access to the functional layers of the de-
vice, then this can be detected by the chip, which can respond with measures
such as overwriting any sensitive data [154]. However, even with the strongest
countermeasures, it is impossible to completely prevent a determined attacker
from compromising a system’s hardware. For this reason we must design high-
security systems so that they can tolerate at least some level of hardware com-
promise.

106 CHAPTER 10. PHYSICAL ATTACKS

Part IV

What Next?

107

Chapter 11

Dealing with hardware
compromise

In the previous three parts of this book, after exploring the “What?”, “Why”,
and “How?” of mobile platform security (Parts I and II), we examined a range
of attacks (Part III). In particular, the spate of software and side-channel at-
tacks against hardware-assisted trusted execution environments (TEEs) have
made it clear that placing unconditional trust in the inviolability of hardware-
assisted security mechanisms is not reasonable. Modern processor hardware
is necessarily complex in order to meet performance requirements essential for
their viability in a competitive market. The complexity has led to characteri-
zations like “hardware is the new software” [47]. This implies that design and
implementation vulnerabilities are likely to continue.

In this part, we take a brief look at various possible strategies in design-
ing and using TEEs in the face of possible compromise. We will discuss both
preventive and reactive techniques.

First, in this chapter, we will look at possible approaches that can be taken
to mitigate the impact of hardware compromise in current TEE architectures.
In Chapter 12, we will discuss some novel hardware extensions, both from
academia and industry, that can strengthen the security of next generation
TEEs.

11.1 Multiple TEEs

Recall from Figure 5.1 that there are different architectural design patterns that
can be applied concretely realizing a TEE. The dominant design pattern today
is the processor secure environment found in both ARM TrustZone and Intel
Software Guard Extensions (SGX). In this style, the same processor executes
both rich execution environment (REE) and TEE software with logical isola-
tion achieved via hardware support. The reason why this design pattern has

109

110 CHAPTER 11. DEALING WITH HARDWARE COMPROMISE

become dominant is economic: it avoids the increased bill-of-materials cost of
a physically distinct TEE realization [178]. Since logical separation implies a
greater degree of sharing between the REE and TEE than does physical separa-
tion, this approach leads to a greater attack surface, especially for side-channel
attacks.

An alternative is to resort to physically distinct external security co-processors
despite the increased cost. As we noted in Chapter 5, there is already a clear
trend in the market in this direction with Google’s Titan and Apple’s Secure
Enclave Processor (SEP) which complement ARM TrustZone in their respec-
tive smart devices.

One mitigation is to use a second TEE in the form of such a co-processor
to ensure the integrity of remote attestation even in the event of an attack
that compromised confidentiality (but not integrity) of the primary TEE. Re-
cent inclusion of specialized hardware units (like Google Titan), support such
approaches by introducing a co-processor in commodity hardware. When en-
suring attestation integrity, all sensitive key material is stored within the co-
processor, such that if the larger general-purpose TEE is compromised, the keys
remain confidential thus preventing an adversary from impersonating a valid
machine.

Although these additional TEEs are currently used to protect systems re-
sources only, it is possible to design schemes using multiple TEEs so that even
in the event of hardware compromise or failure in some of them, some security
guarantees could still be maintained [4].

11.2 Application-specific techniques

TEE functionality is used to design solutions that provide security and privacy
guarantees in various applications. If there is a vulnerability in the TEE itself,
and an adversary successfully exploits it to circumvent these guarantees, it
may leave behind tell-tale cues in the state of the particular application under
consideration. By monitoring for such cues, it may be possible to detect and/or
account for potential TEE compromise.

An example of such application-specific mitigation can be seen in the de-
sign of proof of elapsed time (PoET) [143], a Sybil-resistance mechanism [91] pro-
posed by Intel as a replacement for proof of work (PoW) [145] used in Bitcoin-
like blockchains. PoW is used to choose which participant in the blockchain
(playing the role of block “miners”) wins the right to append the next block
in the blockchain. To do this in a fair manner, PoW requires miners to solve
a cryptographic puzzle for a given block. The miner who finds the solution
first is declared the winner. The probability of winning is proportional to the
amount of computational work that the miner has at its disposal. The scheme is
fair in the sense the available computational resources is the only factor that in-
fluences the chance of a miner winning. However, the computation necessary
is wasteful, leading to the extravagant energy consumption associated with
PoW.

11.2. APPLICATION-SPECIFIC TECHNIQUES 111

PoET aims to achieve the same probability distribution for a miner winning
the right to append the next block. But instead of relying on a computational
puzzle, PoET relies on having the processor wait for a certain duration of time
(chosen randomly from the desired distribution), and issue a certificate from
the TEE attesting that the processor has indeed waited for the specified time.
The miner with the least waiting time is the winner.

The designers of PoET wanted to mitigate the impact of an adversary com-
promising a small number of TEEs. Rather than attempting to detect com-
promise, their approach is not allow a TEE to win the next block if its rate of
winning in the recent past has exceeded a certain threshold. A TEE may exceed
the threshold either because the adversary has compromised it or because of
sheer good luck. By suitably choosing the threshold, the latter possibility can
be made sufficiently small. While this strategy does not account for all possible
ways in which an adversary who compromises a small set of nodes can take
advantage of the system, it does prevent an attacker with a single compromised
machine from winning arbitrarily many blocks.

Although PoET is an example in a non-mobile setting, similar application-
specific mitigation may also be possible in mobile device settings. Application-
specific mitigation can be seen as an instance of cross-layer design for security, a
term coined by Frank Piessens [210]. Abstractions used in computer science
to cleanly isolate one layer or building block from another can deprive the de-
signer of the ability to design and deploy novel mitigations. Piessens notes
that application-specific information (e.g., about which data is confidential) is
typically lost during compilation. By making such information available at
run-time, large classes of attacks can be defended against. In other words,
while “leaky abstractions” [210] can lead to side-channel attacks, carefully me-
diating useful information across abstraction boundaries can also help the de-
fender. An example of this approach is HardScope [200] where a small number
of additional processor instructions (and accompanying logic) combined with
compiler support for instrumentation, can enforce variable visibility (scope)
information at run-time and can thus be used to prevent various data-oriented
attacks that exploit memory vulnerabilities.

112 CHAPTER 11. DEALING WITH HARDWARE COMPROMISE

Chapter 12

Towards next-generation TEEs

In this chapter, we will discuss potential approaches that can be used to strengthen
the security guarantees in the next generation trusted execution environments
(TEEs). We will cover both academic proposals, including some early ones, as
well as recent industry developments.

12.1 CPU-based TEE architectures

12.1.1 AEGIS

AEGIS [246] was the first published example of an enclave-based trusted ex-
ecution architecture, with processes being provided with a tamper-evident or
tamper-resistant processing environment.

The AEGIS architecture follows a “critical section”-like approach: a pro-
gram will signal to the processor that it should enter tamper-evident mode
with an enter_aegis instruction, which also specified the number of subse-
quent bytes to measure before continuing with their execution. This mea-
sured code section can then perform additional checks of other code sections
and the execution context. While in tamper-evident mode, the program can
use a sign_msg instruction to remotely attest the code section marked by the
enter_aegis instruction executed to enter tamper-evident mode. Once the
sensitive computation is complete, the program executes an exit_aegis in-
struction to return the processor to its normal execution mode.

[246] also explores the trade-offs that need to be made when deciding how
to apportion trusted functionality between the processor and the operating sys-
tem. The authors argue that a security kernel is more flexible and requires less
modification to the processor, but that this approach requires the verification
of more trusted code and may reduce performance.

113

114 CHAPTER 12. TOWARDS NEXT-GENERATION TEES

12.1.2 Late-launch-based TEEs

Flicker [180] uses the late launch functionality of modern Intel x86 central pro-
cessing units (CPUs) to provide a TEE. These CPUs implement the skinit in-
struction, which stops all other execution before measuring and executing a
designated piece of code in cached memory. This measurement process is inte-
grated with the Trusted Platform Module (TPM), allowing persistent sensitive
data associated with that piece of code to be protected by sealing.

Flicker uses late launch to execute a trusted application, whose data is pro-
tected by virtue of the fact that no other code runs concurrently with it, and that
at completion the application erases any sensitive data and returns the system
to its original state.

SMART [97] provides similar functionality for non-x86 devices, describing
hardware modifications needed to provide late launch on an embedded CPU.

12.1.3 Sanctum

Sanctum [83] modifies the RISC-V architecture to provide enclave-type TEEs,
with the explicit goal of mimicking the functionality of Software Guard Exten-
sions (SGX) as closely as possible. Sanctum provides memory isolation, with
isolation also extending to the last-level cache; this prevents the use of cache-
timing side-channel attacks against enclaves.

12.1.4 Keystone

Keystone [165] is another enclave-type TEE for the RISC-V architecture. How-
ever, unlike Sanctum, Keystone is built as a software layer atop an unmodified
RISC-V architecture, allowing its functionality to be configured according to
the needs of the application in question. However, though the architecture
itself is unmodified, Keystone requires that the hardware platform provide
trusted boot and hardware randomness; and that the manufacturer perform
key provisioning (Section 4.1.1). Nevertheless, realizing these is significantly
less burdensome than implementing a fully hardware-based TEE.

12.1.5 MI6

The MI6 processor [63] is designed to provide secure enclaves that are resis-
tant to microarchitectural side-channel attacks despite aggressively speculative
out-of-order execution. MI6 partitions the entire memory hierarchy which, for
instance, facilitates protection against cache bandwidth side-channels not cov-
ered by Sanctum. Thus, MI6 enclaves are guaranteed not to share cache lines
with other software. Other MI6 changes eliminate a number of smaller timing
differences in the cache-access pipeline. A new purge instruction is used af-
ter protection domain transitions, emptying the pipeline, resetting the branch
predictor, and flushing the L1 cache.

12.1. CPU-BASED TEE ARCHITECTURES 115

12.1.6 TrustLite & TyTAN

TrustLite [152] provides enclaves for embedded devices without a memory
management unit (MMU). Each enclave is configured so that its working mem-
ory can be read only when the CPU is executing an instruction from a permis-
sible memory region, and its code cannot be overwritten at all.

This approach protects enclaves from the operating system (OS), with only
slightly greater hardware complexity than a split-world architecture, but with-
out the need for a security kernel. This makes TrustLite suitable for small em-
bedded devices that lack the resources to run a normal security kernel. Ty-
TAN [67] builds a complete FreeRTOS [38]-based system around TrustLite on
top of the Intel Siskiyou Peak platform.

12.1.7 Sanctuary

Sanctuary [66] provides user-space enclaves using TrustZone, taking advan-
tage of access control features included in Arm’s TZC-400 TrustZone Address
Space Controller (TZASC). Rather than basing access control on just a secure/normal-
world bit, the TZC-400 allows access control based on the source device. Sanc-
tuary dedicates cores of a multi-core processor to the execution of enclave code,
with access to the memory allocated to an enclave being restricted to this core
only. This protects enclaves even from a compromised OS. Only one enclave
can run at a time on a given core, thereby protecting enclaves from each other.

Unlike normal TrustZone-based systems, Sanctuary trusted applications do
not run in secure mode, providing a greater level of isolation between enclave
code and the security kernel; this significantly reduces its attack surface.

12.1.8 TIMBER-V

TIMBER-V [262] provides enclave functionality with highly efficient dynamic
memory management, and suitable for implementation on low-end proces-
sors. In addition to typical enclaves, supported by trusted user mode, TIMEBER-
V also adds a trusted supervisor mode that can be used to realize trusted sys-
tem services within an untrusted operating system. TIMBER-V is based on
a memory-tagging architecture, where each word of memory contains several
“tag bits” that can be used for access control. TIMBER-V uses two-bit tags, rep-
resenting normal memory, enclave memory, trusted entry point, and trusted
supervisor memory.

These tags allow applications to interleave regions of memory whose ac-
cess is restricted to different security domains: client applications (CAs) can
only access normal memory, trusted applications (TAs) can access enclave and
normal memory, and the trusted supervisor can access everything. In addi-
tion, the CPU switches between different security domains according to the
tag applied to the instruction being loaded.

This approach allows memory to be transferred between an application and
its enclave very efficiently, by simply adjusting the tag on each word.

116 CHAPTER 12. TOWARDS NEXT-GENERATION TEES

12.1.9 CURE

The CURE enclave architecture [41] attempts to collect all previously proposed
techniques for enclave hardware support into one design, prototyped on RISC-
V. Enclave memory (temporally dedicated to CPU cores) is configured with
dedicated cache ways, thereby mitigating the risk of side-channel attacks. En-
clave identifiers are not only included into core memory management, but also
added to system bus arbiters for both CPU and direct memory access (DMA)
controller; this allows peripherals to be temporally associated with enclaves.
Such an approach has not been fully explored in prior designs.

The authors claim that CURE is flexible enough to implement different
kinds of hardware-assisted enclaves (as viewed from the OS), including kernel-
space enclaves for isolating individual parts of kernel operations such as mem-
ory management, virtual machine enclaves for traditional workload separa-
tion, as well as subspace enclaves, which can be seen as an isolation/fragmentation
mechanism usable at the highest privilege levels to protect against memory
corruption vulnerabilities or for trusted computing base (TCB) minimization.
The opportunity to be flexible in what types of enclaves to support stems from
that the trust boundaries of an enclave is memory and not specific to privilege
levels or applications; thus it is possible to construct enclave boundaries within
traditional execution units, similarly to what can be achieved with hardware
capabilities such as CHERI [263].

12.1.10 Arm Confidential Compute Architecture

In 2021, Arm released its plan for its next generation architecture (ARMv9.3A).
As part of this hardware update, the isolation features that constitute the foun-
dation of Arm TrustZone have been extended to include two new memory
isolation contexts, one to be used for the EL3 firmware, and the other, more
noteworthy, is the realm mode, which is a new “split world” approach proposed
to be used for enclaves, in the form of more dynamic isolation contexts with a
minimal TCB. This new architecture is named Confidential Compute Architec-
ture (CCA), a clear reference to the ongoing enclave specification work at the
Linux Consortium for Intel X86 instruction architecture (X86) hardware (AMD
Secure Encrypted Virtualization (SEV) and Intel SGX/Total Memory Encryp-
tion (TME)). Arm notes that CCA can be used both in cloud computing as well
as at the edge (in terminal devices) [29].

The CCAs architecture is depicted in Figure 12.1. The technical details of
the realm mode are to be released over the next few years, but the isolation
of the Realms is achieved by a new memory firewall, the Granule Protection
Table (GPT) applied after memory translation [76]. The GPT is configured by
EL3, and partitions physical memory for Realm mode, Secure mode, Monitor
(EL3) and Non-Secure mode address spaces.

Similar to the Non-Secure (NS) bit in Arm TrustZone, now two bits (corre-
sponding to four possible worlds) will permeate throughout the memory ac-
cess framework, and especially caches, to map access control configuration to

12.2. BEYOND TEES 117

ARM Confidential Compute Architecture

Hypervisor SEL2

OS OS

App App

OS

app

enclave

TEE

TA

Realm
manager

Figure 12.1: Arm CCA: Extending the Arm split-world architecture towards
enclave support

the firewalling. At the moment it remains unclear whether the extended con-
figuration is visible on the internal bus for external hardware components to
react to the distinction. Just like with AMD SEV and Intel TME, the partitioned
address spaces will be assigned their individual memory encryption keys, and
page encryption will be tweaked per address when being encrypted as stored
to dynamic random access memory (DRAM) [76]. This makes the realm mem-
ory contents inaccessible to parallel or higher privilege levels, even for such
components that may have configuration rights to the aforementioned firewall.

In contrast to x86 enclave designs, in Arm CCA, enclave key and lifecycle
management, attestation and device authentication are implemented in soft-
ware, with the realm manager, i.e. the software running in realm hypervisor
mode, playing a central role. It is likely that ARM will propose a common,
open-source base for this software, as was done in the case of Arm Trusted
Firmware which is today the EL3 reference code and definition for e.g. power
management control and world-switching logic in Arm devices. It can be ex-
pected that original equipment manufacturers (OEMs) and chip vendors will
adapt such a future common realm manager to their own needs, resulting in
a common baseline for functionality like enclave setup and attestation, but
whether the trust root (keys) will be rooted with Arm or OEMs is unclear at
the moment.

12.2 Beyond TEEs

The TEEs in modern CPUs provide tight integration between TAs and rich exe-
cution environment (REE) applications, allowing high performance compared
to the use of secure co-processors. However, in many computationally-bound
applications such as machine learning, the bulk of the work is offloaded to
a co-processor such as a graphics processing unit (GPU) outside of the CPU

118 CHAPTER 12. TOWARDS NEXT-GENERATION TEES

itself. The goal of the following works is to allow generic computation to be
offloaded to the accelerator with minimal hardware modifications and without
sacrificing the isolation provided by a TEE.

12.2.1 Slalom

For existing TEEs, an example of the current state of the art in combining TEEs
with offloaded computation is Slalom [254], which uses cryptography to al-
low the bulk of the computation for neural network evaluation to be safely
offloaded to an untrusted GPU. Each layer of a neural network has a linear
and a nonlinear component, taking as input a vector −→x and outputting a value
y = f (W−→x), where W is a weight matrix. The key observation is that most of
the computational complexity is in the linear part W−→x . The TEE can therefore
outsource this computation to the GPU, and use Freivalds’ algorithm [102] to
probabilistically verify the result with lower complexity than the computation
itself. Furthermore, since the computation being offloaded is linear, the TEE
can send cryptographically blinded data to the GPU, at the cost of some pre-
computation. It does this by taking pseudo-random blinding vector −→r ∈ Zn,
then precomputing and securely storing an ‘unblinding vector’ W−→r , where W
has been discretized to an element of Zn. Then, for the online part, the TEE has
the GPU compute W · (−→x +−→r), uses Freivalds’ algorithm to verify the result,
and subtracts the precomputed unblinding vector W−→r .

Despite the overhead of the verification process, Slalom provides a signifi-
cant speedup relative to computation in the TEE: 6–20× without blinding, and
4–11× with blinding. Nevertheless, this is slower than evaluating the neural
network using a GPU in the normal way, and so other works consider how to
extend the trust boundary to the GPU.

12.2.2 Secure GPU accelerators

Heterogeneous Isolated EXecution (HIX) [147] allows isolated computation us-
ing SGX, an unmodified GPU and minor changes to the I/O interconnect. Sup-
pose an application enclave wishes to send private data to the GPU for compu-
tation. First, it communicates with a special-purpose SGX enclave, called the
GPU enclave, that alone is able to control the GPU. The GPU enclave mediates
between the application enclave and the GPU, establishing a shared key that
will be used to encrypt the data. The application enclave encrypts its data and
stores it in a protected region of memory; it then instructs the GPU enclave to
send an encrypted command to the GPU to copy the data to the GPU’s internal
memory via DMA. The data is then decrypted using the normal computational
facilities of the GPU, allowing the desired processing to take place.

As encryption and decryption occur only when data is transferred to and
from the GPU, the overhead is quite low for tasks whose workload is dom-
inated by computation within the GPU. This is the ideal situation, since less
computationally-demanding tasks can be carried out efficiently using the CPU.

12.2. BEYOND TEES 119

However, because the GPU is unmodified, it is impossible to perform re-
mote attestation of its workloads. This means that an adversary that can ma-
nipulate the PCI Express (PCIe) link or replace the GPU itself can defeat the
security of the TEE. Consequently, the TEE as a whole cannot perform mean-
ingful remote attestation unless the operator of the system is trusted a priori.

A later research project presents rack-scale heterogeneous TEEs [275]. This
work specifically targets rack-scale server deployments, where one node on the
rack acts as a secure controller that mediates access to the PCIe fabric. Compute
resources are then completely dedicated to specific users and hard-rebooted
between uses. The secure controller can be remote attested, and due to the
full reboot, the computer resources are known to be in a known state on use.
Whereas other heterogeneous TEEs require hardware changes, [275] can be re-
alized on existing hardware but is restricted to a server setting.

In contrast to HIX and rack-scale heterogeneous TEEs, Graviton [258] adds
TEE functionality to the GPU, allowing remote attestation and explicit sup-
port for encrypted data transfers. This mitigates the greatest weakness of HIX,
namely that it cannot protect against an attacker capable of interfering with the
system hardware, at the cost of no longer being compatible with commodity
GPUs.

12.2.3 Morpheus

Morpheus is a run-time security mechanism with goals similar to memory-
safety features in contemporary processors (Chapter 7), but takes a starkly dif-
ferent approach [103]. The underlying idea of Morpheus is that correct pro-
gram behavior depends on defined program behavior specified by the pro-
gram code, whereas exploitation of memory vulnerabilities depends on un-
defined behavior. Consequently, Morpheus aims to randomize all undefined
operations of a program implementation, such as memory layout and instruc-
tion encoding, in order to prevent an attacker from introducing reliable attacks
against the program. Specifically, Morpheus implements a RISC-V extension
for domain tagging, pointer displacement, domain encryption, churn, and attack de-
tection.

Program memory is split into four domain: code, data pointers, code point-
ers, and other memory. Initial domain assignments are specified by the com-
piler. The memory and registers are extended with 2-bit domain tags such that
the hardware can track the tags during computation. The pointer displacement
feature adds a level of memory address translation such that all addresses are
displaced based on a periodically-changing displacement value. Domain en-
cryption is applied to all code and pointers. Churn, i.e. re-randomization, is
periodically applied such that all encrypted domains are re-encrypted with a
new key and the displacement value is set to a new random value. While an
attacker could leak specific randomization values, those values are valid only
until the next churn takes place. Finally, attack detection attempts to detect
probing attempts that aim to find the randomization values and triggers con-
tinuous churn when a possible attack is detected.

120 CHAPTER 12. TOWARDS NEXT-GENERATION TEES

The churn is implemented in hardware such that the program needs not
be stopped to perform re-randomization. Instead, the hardware does a lin-
ear sweep of memory and keeps track of the progress such that it can trans-
parently use either the new or old displacement and key where appropriate
during re-randomization. Due to the hardware implementation with domain-
tagging and concurrent churn Morpheus achieves good performance, incur-
ring only a 0.8% overhead on average when measured with the SPEC CPU
2006 C-language benchmarks. The security of Morpheus relies on the churn pe-
riod being smaller than the time an attacker needs to break the randomization.
Consequently, Morpheus might not be effective against attacks that exploit a
direct information leak to break address-space layout randomization (ASLR).
Nonetheless, even the suggested churn period of 50ms, with the above over-
head, is more than sufficient to prevent known ASLR probing mechanisms.

12.2.4 Blinded computing

One way to securely process data without having direct access to it is homo-
morphic encryption, which allows computation to be performed on the en-
crypted data directly, without ever revealing the plaintext to the party per-
forming the computation [257]. Slalom, described in Section 12.2.1, is a special
example of this approach. Homomorphic encryption offers strong guarantees
as it protects the data both against side-channels and even malicious programs
that might intentionally attempt to leak the data. Unfortunately, in many cases
homomorphic encryption incurs unacceptable overhead when used for general
computation.

Another approach is to use traditional TEE architectures that provide TA at-
testation and allow confidential processing of data. However, programs today
need to process an ever increasing amount of confidential data. Meanwhile,
TEE context switches are expensive and increased functionality increases the
likelihood of security-related bugs within the TEE software. Blinded compu-
tation presents an alternative that minimizes the need for a separate execution
environment or costly cryptographic measures.

Blinded computation combines software-guided instrumentation with dy-
namic taint-tracking to provide practical side-channel resistant computation
on blinded data, with a minimal TCB restricted to a small single-purpose TEE.
Its adversary model is similar to a traditional TEE but with strong protection
against side-channels; unlike previous taint-tracking architectures [269], the
adversary can also corrupt any code with run-time attacks such that the adver-
sary can run arbitrary code. A small TEE is used to only provide initial blinded
inputs to a program. The hardware then enforces a policy that prevents any
computation from directly leaking data, or exposing it via side-channels. Un-
like static analysis, this approach protects data from being exposed even when
an attacker exploits a software vulnerability to run their own code. Since the
blindedness of the the data is ensured by hardware-enforced access control
rather than cryptographic blinding, this approach avoids the overhead of ap-
proaches based on homomorphic encryption.

12.2. BEYOND TEES 121

Since no blinded data can be written to external peripherals, all output
is passed back to the small single-purpose TEE which then can securely re-
encrypt the computation results before they are sent back to the client that ini-
tially provided the input.

Dynamic dataflow tracking has similarities to prior approaches that, for
instance, use it to prevent confidentiality by tracking information flows from
taint sources to sinks (for instance, passwords and output functions, repsec-
tively) [247]. Blinded computation relies on a compiler instrumentation and
software data-flow verification to prevent the copious false-positives that plague
some naive taint-tracking policies [240].

Best-practices for writing side-channel resistant code show that it is pos-
sible to construct code that is side-channel resistant. Recent compiler-based
approaches have further demonstrated that it is also feasible to construct such
code automatically [62]. Blinded computation uses similar techniques to au-
tomate software transformation and provide compile-time policy verification.
Note that purely software-based approaches do not prevent memory errors
from directly addressing the confidential data, nor do they provide protection
from a malicious OS, both of which the hardware-enforced policy of blinded
computation protects against. Recent work has also shown that taint-tracking
can be used to prevent micro-architectural attacks such as Spectre [270, 149]; al-
lowing a hardware-based to avoid restrictive policies while still allowing spec-
ulation. Taken together, blinded computation provides security comparable
to homomorphic encryption, with some hardware modification, but minimal
development and performance overhead.

12.2.5 In-memory computing

For many decades, computing efficiency has been increasing exponentially in
accordance with Moore’s law, but in recent years the continued miniaturization
and speed-up of CPUs has hit against the limitations of physics. At the same
time, computing has become increasingly data-centric, placing a performance
burden especially on memory I/O.

One emerging, architectural research direction is in- or near-memory comput-
ing [192],[230] where memory cells can directly targeted by algorithm compu-
tation in programmable logic that either is co-located with the memory frame-
work or physically nearer to it than the CPU on the other end of the mem-
ory bus. Although in-memory computing can have obvious performance ben-
efits when processing large amounts of data in use cases such as video fil-
tering or some machine learning algorithms, some obvious security applica-
tions can be envisioned for such architectures also: Physical unclonable func-
tions (PUFs) could leverage the physical randomness of memory cells and pro-
vide error-correction functionality co-located with the memory, in essence pro-
viding device-local key material. Similarly, true random number generators
(TRNGs) are an obvious use-case that could be implemented, based on mem-
ory cells as a source of randomness.

122 CHAPTER 12. TOWARDS NEXT-GENERATION TEES

The more architecturally diverse the programmability in devices becomes,
the more difficult it will be to argue about attack vectors and isolation: E.g. if
an attack can be embedded into the memory framework (firmware), can it then
circumvent all existing memory and firewall protections that we rely on today?
If memory is programmable, can we leverage the physical layout of memory
cells as a guaranteed isolation boundary for separating security domains in the
device (in a similar fashion to memory tagging). The next 5-10 years will tell
us this.

12.3 Conclusion

The evolution of hardware security mechanisms on mobile devices is signifi-
cantly more brisk than it has been in the past. In parallel with the introduction
of new coarse-grained isolation mechanisms like Arm CCA that are suitable
for constructing TEEs and enclave architectures, architectural additions for
integrity and memory safety (like Arm pointer authentication (PA), Memory
Tagging Extension (MTE), Branch Target Identification (BTI) and Intel Control-
flow Enforcement Technology (CET)) are already being deployed at scale, and
academic research continues to produce new, even better concepts.

Further hardware innovations are awaiting imminent adoption. With the
breakdown of Moore’s law, speed of computation is increasingly achieved via
heterogenity, incorporating dedicated hardware cores sharing memory access
with general-purpose cores. All forms of digital signal processors (DSPs), in-
cluding neural processing units (NPUs) and GPUs are good examples of com-
ponents in such designs. It remains a partially open issue how secure domains
are built across such components in heterogeneous hardware, particularly be-
cause such purpose-built cores are usually not equipped with built-in protec-
tion mechanisms such as privilege rings or isolation domains that are now
commonly found in general-purpose processors. Another potential design ap-
proach for mobile device processors is hardware reconfigurability. Already to-
day, network equipment such as base stations or routers incorporate integrated
field programmable gate array (FPGA) or Coarse Grained Reconfigurable Ar-
ray (CGRA) hardware for optimizing packet processing speed, routing or cryp-
tographic operations. But the fact that these components are re-programmable,
with very low-level access to memory and arithmetic logic units (ALUs), also
makes them potential entry points for malware and attacks. On one hand, such
hardware can serve as a re-configurable way to implement hardware-assisted
security mechanisms, but on the other hand, they may pose a threat to overall
device integrity.

Finally, new memory technologies such as magnetoresistive random-access
memory (MRAM) and phase-change random-access memory (PRAM) point us
towards a future where system memory will be persistent, retaining state even
across power-cycles. This, too, is a double-edged sword: it can significantly
shorten the boot-up time for mobile devices, and can improve security by al-
lowing security mechanisms (such as system counters in memory) to remain

12.3. CONCLUSION 123

unconditionally stateful; but at the same time successful system attacks may
end up becoming memory resident. This may require us to revisit many of
our integrity (and stability) solutions we use today that are based on the pre-
sumption that random access memory (RAM) is volatile, such as the role of
boot-up integrity metrics or firmware updates vs. live system patching from
the perspective of memory.

All in all, the field of (mobile) platform security is now an interesting, fast
moving field of research and engineering. We hope this book has provided
you with an overview of the contemporary security architectures in mobile de-
vices, explaining the de-facto mechanisms and tools that has kept our personal
devices safe during the last two decades, outlining what is changing and im-
proving in the immediate future on the platform, and identifying the expected
challenges ahead.

124 CHAPTER 12. TOWARDS NEXT-GENERATION TEES

Appendix A

Commercial TEE deployments

Since TEE technology, and in particular TrustZone, has been deployed in large
scale, a number of TEE vendors have emerged over the years. The majority
of these are with proprietary implementations of the TEE software stack. Ta-
ble A.1 lists TEE vendors for TrustZone, TrustZone-M and the RISC-V architec-
ture.

1https://globalplatform.org/wp-content/uploads/2019/07/01-CR-1.0_GP180004-
Certificate-and-Certification-Report_20190712.pdf

2https://www.commoncriteriaportal.org/files/epfiles/CC%20Huawei%20iTrustee%20
Software%20V2.0%20Security%20Target%202.1.pdf

3https://www.trustonic.com/solutions/iot-security/
4https://www.op-tee.org/
5https://www.provenrun.com/products/provencore/
6https://www.qualcomm.com/products/features/mobile-security-solutions
7https://www.rockycore.cn/index.html
8https://optimumdesk.com/it-solutions/data-loss-prevention-privacy
9https://www.sierraware.com/open-source-ARM-TrustZone.html

10https://www.trustkernel.com/en/products/tee/t6.html
11https://developer.samsung.com/teegris
12https://source.android.com/security/trusty
13https://www.taf.net.cn/Tee_detail.aspx?_ID=2349283b-6311-4617-862c-1122345443

54
14https://globalplatform.org/certified-products/watchtrust-2-1-1-on-sc9860-2/
15https://globalplatform.org/wp-content/uploads/2019/09/GP-SE-2019_02-CR-

1.0_GP190006-Certificate-and-Certification-Report_20190909.pdf
16https://www.trustonic.com/technical-articles/kinibi-m/
17https://www.st.com/en/embedded-software/provencore-m.html
18https://hex-five.com/first-secure-iot-stack-riscv/

125

https://globalplatform.org/wp-content/uploads/2019/07/01-CR-1.0_GP180004-Certificate-and-Certification-Report_20190712.pdf
https://globalplatform.org/wp-content/uploads/2019/07/01-CR-1.0_GP180004-Certificate-and-Certification-Report_20190712.pdf
https://www.commoncriteriaportal.org/files/epfiles/CC%20Huawei%20iTrustee%20Software%20V2.0%20Security%20Target%202.1.pdf
https://www.commoncriteriaportal.org/files/epfiles/CC%20Huawei%20iTrustee%20Software%20V2.0%20Security%20Target%202.1.pdf
https://www.trustonic.com/solutions/iot-security/
https://www.op-tee.org/
https://www.provenrun.com/products/provencore/
https://www.qualcomm.com/products/features/mobile-security-solutions
https://www.rockycore.cn/index.html
https://optimumdesk.com/it-solutions/data-loss-prevention-privacy
https://www.sierraware.com/open-source-ARM-TrustZone.html
https://www.trustkernel.com/en/products/tee/t6.html
https://developer.samsung.com/teegris
https://source.android.com/security/trusty
https://www.taf.net.cn/Tee_detail.aspx?_ID=2349283b-6311-4617-862c-112234544354
https://www.taf.net.cn/Tee_detail.aspx?_ID=2349283b-6311-4617-862c-112234544354
https://globalplatform.org/certified-products/watchtrust-2-1-1-on-sc9860-2/
https://globalplatform.org/wp-content/uploads/2019/09/GP-SE-2019_02-CR-1.0_GP190006-Certificate-and-Certification-Report_20190909.pdf
https://globalplatform.org/wp-content/uploads/2019/09/GP-SE-2019_02-CR-1.0_GP190006-Certificate-and-Certification-Report_20190909.pdf
https://www.trustonic.com/technical-articles/kinibi-m/
https://www.st.com/en/embedded-software/provencore-m.html
https://hex-five.com/first-secure-iot-stack-riscv/

126 APPENDIX A. COMMERCIAL TEE DEPLOYMENTS

G
P

C
ertification

TEE
Vendor

Functional
Security

License
N

ote

TrustZ
one

C
loud

Link
T

EE
1

Pingtouge
Sem

iconductor
✓

✓
proprietary

iTrustee
2

H
uaw

ei
proprietary

Form
erly

Secure
C

ore

K
inibi 3

Trustonic
✓

proprietary
Form

erly
M

obicore
and

<t-base

O
P-T

EE
4

Linaro
BSD

2-C
lause

ProvenC
ore

5
Prove

&
R

un
proprietary

Q
ualcom

m
T

EE
6

Q
ualcom

m
proprietary

Form
erly

Q
SEE

R
ocky

C
ore

7
Suzhou

R
ong

C
ard

IntelligentTechnology
✓

proprietary

SecuriTEE
8

Solacia
proprietary

SierraT
EE

9
SierraW

are
proprietary

T
6

10
TrustK

ernel
G

N
U

G
PL

T
EEG

R
IS

11
Sam

sung
✓

proprietary
G

P
certification

for
M

ediatek
M

T6737T

TLK
[198]

N
vidia

M
IT

Trusty
12

G
oogle

M
IT

T
U

R
BO

T
EE

13
Eastcom

peace
Technologies

✓
proprietary

Yunos
T

EE
Taobao

Softw
are

✓
proprietary

W
A

TC
H

T
R

U
ST

14
W

atchdata
✓

✓
proprietary

U
pteq

N
FC

422
v1.0

15
G

em
alto

(Thales
G

roup)
✓

proprietary

TrustZ
one-M

K
inibi-M

16
Trustonic

N
/A

proprietary

ProvenC
ore-M

17
Prove

&
R

un
N

/A
proprietary

R
ISC

-V
M

ultiZ
one

18
H

ex
Five

Security
N

/A
M

IT

Table
A

.1:
C

om
m

ercial
T

EE
im

plem
entations.

The
G

P
C

ertification
colum

n
indicates

TEEs
that

have
received

TEE
Initial

C
onfiguration

v1.1
functionalcertification

and/or
TEE

Security
certification

according
to

https://globalplatform.org/cer
tified-products/.

https://globalplatform.org/certified-products/
https://globalplatform.org/certified-products/

Bibliography

[1] Martín Abadi et al. “Control-Flow Integrity”. In: Proceedings of the 2005
ACM Conference on Computer and Communications Security. 2005. DOI: 10
.1145/1102120.1102165.

[2] Advanced Micro Devices, Inc. AMD64 Architecture Programmer’s Man-
ual. 2021. URL: https://www.amd.com/system/files/TechDocs/40332
.pdf (visited on 01/16/2022).

[3] Periklis Akritidis et al. “Baggy Bounds Checking: An Efficient and Backwards-
Compatible Defense against Out-of-bounds Errors”. In: Proceedings of
the 2009 USENIX Security Symposium. 2009.

[4] Fritz Alder. “TEE2 – Combining Trusted Hardware to Enhance the Se-
curity of TEEs”. https://falder.org/tee2-thesis.pdf. Technical
University of Darmstadt, 2019.

[5] Alibaba. Alibaba Cloud Released Industry’s First Trusted and Virtualized In-
stance with Support for SGX 2.0 and TPM. 2020. URL: https://www.alib
abacloud.com/blog/alibaba-cloud-released-industrys-first-tr
usted-and-virtualized-instance-with-support-for-sgx-2-0-an
d-tpm_596821 (visited on 01/29/2021).

[6] Tiago Alves and Don Felton. “TrustZone: Integrated Hardware and Soft-
ware Security”. In: Information Quarterly 3.4 (2004), pp. 18–24.

[7] Android Open Source Project. Android 6.0 Compatibility Definition. 2015.

[8] Android Open Source Project. HWAddressSanitizer. 2020. URL: https:
//source.android.com/devices/tech/debug/hwasan (visited on
10/27/2020).

[9] Android Open Source Project. Scudo. 2020. URL: https://source.andr
oid.com/devices/tech/debug/scudo (visited on 10/27/2020).

[10] Apple. Data protection. 2018. URL: https://support.apple.com/guid
e/security/data-protection-overview-secf6276da8a/web (visited
on 03/06/2022).

[11] Apple Inc. Apple T2 Security Chip Security Overview. https://www.appl
e.com/mac/docs/Apple_T2_Security_Chip_Overview.pdf. 2018.

127

https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1102120.1102165
https://www.amd.com/system/files/TechDocs/40332.pdf
https://www.amd.com/system/files/TechDocs/40332.pdf
https://falder.org/tee2-thesis.pdf
https://www.alibabacloud.com/blog/alibaba-cloud-released-industrys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm_596821
https://www.alibabacloud.com/blog/alibaba-cloud-released-industrys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm_596821
https://www.alibabacloud.com/blog/alibaba-cloud-released-industrys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm_596821
https://www.alibabacloud.com/blog/alibaba-cloud-released-industrys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm_596821
https://source.android.com/devices/tech/debug/hwasan
https://source.android.com/devices/tech/debug/hwasan
https://source.android.com/devices/tech/debug/scudo
https://source.android.com/devices/tech/debug/scudo
https://support.apple.com/guide/security/data-protection-overview-secf6276da8a/web
https://support.apple.com/guide/security/data-protection-overview-secf6276da8a/web
https://www.apple.com/mac/docs/Apple_T2_Security_Chip_Overview.pdf
https://www.apple.com/mac/docs/Apple_T2_Security_Chip_Overview.pdf

128 BIBLIOGRAPHY

[12] Apple Inc. iOS Security — iOS 12. https://www.apple.com/business
/site/docs/iOS_Security_Guide.pdf. 2018.

[13] Apple Inc. Preparing Your App to Work with Pointer Authentication. 2020.
URL: https://developer.apple.com/documentation/security/prep
aring_your_app_to_work_with_pointer_authentication (visited on
10/27/2020).

[14] Apple Inc. Swift. 2020. URL: https://developer.apple.com/swift/
(visited on 10/25/2020).

[15] Apple Platform Security. Apple, 2020.

[16] Apple. Inc. About FaceID Advanced technology. 2020. URL: https://supp
ort.apple.com/en-gb/HT208108 (visited on 03/06/2022).

[17] William A Arbaugh, David J Farber, and Jonathan M Smith. “A secure
and reliable bootstrap architecture”. In: Proceedings of the 1997 IEEE Sym-
posium on Security and Privacy. IEEE. 1997.

[18] ARM Ltd. ARM Security Technology - Building a Secure System using Trust-
Zone Technology. http://infocenter.arm.com/help/topic/com.arm
.doc.prd29-genc-009492c. 2009.

[19] ARM Ltd. Arm TrustZone technology for ARMv8-M Architecture, Version
2.1. https://static.docs.arm.com/100690/0201/armv8_m_architec
ture_trustzone_technology_100690_0201_01_en.pdf. 2018.

[20] ARM Ltd. Arm® Platform Security Architecture Trusted Base System Archi-
tecture for Arm®v6-M, Arm®v7-M and Arm®v8-M 1.0. ARM, 2018. URL:
https://armkeil.blob.core.windows.net/developer/Files/pd
f/PlatformSecurityArchitecture/Architect/DEN0083-PSA_TBSA-
M_1.0-bet1.pdf.

[21] ARM Ltd. Armv8-A architecture reference manual, DDI 0487F.c. DDI 0487F.c.
2020.

[22] ARM Ltd. Armv8-M Architecture Reference Manual, Version A.k. http://i
nfocenter.arm.com/help/topic/com.arm.doc.ddi0553a.k/DDI0553
A_k_armv8m_arm.pdf. 2019.

[23] ARM Ltd. Armv8.5-A Memory Tagging Extension. Whitepaper. 2019.

[24] ARM Ltd. Hardware Accelerated Crypto|Mbed OS 5 Documentation. 2021.
URL: https://os.mbed.com/docs/mbed-os/v6.15/porting/hardware
-accelerated-crypto.html.

[25] ARM Ltd. Isolation using virtualization in the Secure world: Secure world
software architecture on Armv8.4, Version 1.0. https://developer.arm.c
om/-/media/Files/pdf/Isolation_using_virtualization_in_the
_Secure_World_Whitepaper.pdf. 2019.

[26] ARM Ltd. Power State Coordination Interface. http://http://infocent
er.arm.com/help/index.jsp?topic=/com.arm.doc.den0022d. 2017.

https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://developer.apple.com/documentation/security/preparing_your_app_to_work_with_pointer_authentication
https://developer.apple.com/documentation/security/preparing_your_app_to_work_with_pointer_authentication
https://developer.apple.com/swift/
https://support.apple.com/en-gb/HT208108
https://support.apple.com/en-gb/HT208108
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c
https://static.docs.arm.com/100690/0201/armv8_m_architecture_trustzone_technology_100690_0201_01_en.pdf
https://static.docs.arm.com/100690/0201/armv8_m_architecture_trustzone_technology_100690_0201_01_en.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0083-PSA_TBSA-M_1.0-bet1.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0083-PSA_TBSA-M_1.0-bet1.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0083-PSA_TBSA-M_1.0-bet1.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0553a.k/DDI0553A_k_armv8m_arm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0553a.k/DDI0553A_k_armv8m_arm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0553a.k/DDI0553A_k_armv8m_arm.pdf
https://os.mbed.com/docs/mbed-os/v6.15/porting/hardware-accelerated-crypto.html
https://os.mbed.com/docs/mbed-os/v6.15/porting/hardware-accelerated-crypto.html
https://developer.arm.com/-/media/Files/pdf/Isolation_using_virtualization_in_the_Secure_World_Whitepaper.pdf
https://developer.arm.com/-/media/Files/pdf/Isolation_using_virtualization_in_the_Secure_World_Whitepaper.pdf
https://developer.arm.com/-/media/Files/pdf/Isolation_using_virtualization_in_the_Secure_World_Whitepaper.pdf
http://http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0022d
http://http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0022d

BIBLIOGRAPHY 129

[27] ARM Ltd. SMC Calling Convention. http://infocenter.arm.com/help
/topic/com.arm.doc.prd29-genc-009492c. 2016.

[28] ARM Ltd. Software Delegated Exception Interface. http://http://infoc
enter.arm.com/help/topic/com.arm.doc.den0054a. 2017.

[29] ARM Ltd. Unlocking the power of data with ARM CCA. 2021. URL: https:
//community.arm.com/developer/ip-products/processors/b/proc
essors-ip-blog/posts/unlocking-the-power-of-data-with-arm-
cca (visited on 03/06/2022).

[30] Arm Ltd. Arm Morello Program. Arm Developer. 2020. URL: https://de
veloper.arm.com/architectures/cpu-architecture/a-profile/mo
rello (visited on 11/29/2020).

[31] Arm Ltd. FIPS 140-2 Non-Proprietary Security Policy. ARM, 2018. URL:
https://csrc.nist.gov/CSRC/media/projects/cryptographic-mod
ule-validation-program/documents/security-policies/140sp326
3.pdf.

[32] Arm® Platform Security Architecture Security Model 1.0. ARM Ltd, Feb.
2020.

[33] Arm® Platform Security Architecture Trusted Boot and Firmware Update 1.0.
ARM Ltd, 2019.

[34] Will Arthur and David Challener. A Practical Guide to TPM 2.0: Using
the Trusted Platform Module in the New Age of Security. 1st. Berkely, CA,
USA: Apress, 2015. ISBN: 9781430265832.

[35] N. Asokan et al. Mobile Platform Security. Vol. 9. Synthesis Lectures on
Information Security, Privacy, & Trust. Morgan & Claypool Publishers,
2014. ISBN: 9781627050975. URL: http://search.ebscohost.com/logi
n.aspx?direct=true&db=nlebk&AN=688023&site=ehost-live&autht
ype=sso&custid=ns192260.

[36] Atsec information security corporation. Cryptographic Module for Intel®
vPro™ Platforms Security Engine Chipset. 2016. URL: https://csrc.nis
t.gov/CSRC/media/projects/cryptographic-module-validation-
program/documents/security-policies/140sp2720.pdf (visited on
07/18/2016).

[37] Roberto Avanzi. “The QARMA Block Cipher Family. Almost MDS Ma-
trices over Rings with Zero Divisors, Nearly Symmetric Even-Mansour
Constructions with Non-Involutory Central Rounds, and Search Heuris-
tics for Low-Latency S-Boxes”. In: IACR Transactions on Symmetric Cryp-
tology 2017.1 (Mar. 2017), pp. 4–44. DOI: 10.13154/tosc.v2017.i1.4-4
4. URL: https://tosc.iacr.org/index.php/ToSC/article/view/583.

[38] AWS. FreeRTOS - Market leading RTOS (Real Time Operating System) for
embedded systems with Internet of Things extensions. 2021. URL: https://w
ww.freertos.org/ (visited on 09/19/2021).

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c
http://http://infocenter.arm.com/help/topic/com.arm.doc.den0054a
http://http://infocenter.arm.com/help/topic/com.arm.doc.den0054a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/unlocking-the-power-of-data-with-arm-cca
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/unlocking-the-power-of-data-with-arm-cca
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/unlocking-the-power-of-data-with-arm-cca
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/unlocking-the-power-of-data-with-arm-cca
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3263.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3263.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3263.pdf
http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=688023&site=ehost-live&authtype=sso&custid=ns192260
http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=688023&site=ehost-live&authtype=sso&custid=ns192260
http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=688023&site=ehost-live&authtype=sso&custid=ns192260
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp2720.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp2720.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp2720.pdf
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://tosc.iacr.org/index.php/ToSC/article/view/583
https://www.freertos.org/
https://www.freertos.org/

130 BIBLIOGRAPHY

[39] Ahmed M. Azab et al. “Hypervision Across Worlds: Real-time Kernel
Protection from the ARM TrustZone Secure World”. In: Proceedings of the
2014 ACM Conference on Computer and Communications Security (CCS).
2014, pp. 90–102. DOI: 10.1145/2660267.2660350.

[40] Brandon Azad. Project Zero: Examining Pointer Authentication on the iPhone
XS. Feb. 1, 2019. URL: https://googleprojectzero.blogspot.com/2
019/02/examining- pointer- authentication- on.html (visited on
02/12/2020).

[41] Raad Bahmani et al. “{CURE}: A Security Architecture with CUstomiz-
able and Resilient Enclaves”. In: Proceedings of the 2021 USENIX Security
Symposium. 2021.

[42] Xiaolong Bai. The last line of defense: understanding and attacking Apple File
System on iOS. 2018. URL: https://i.blackhat.com/eu-18/Thu-Dec-
6/eu-18-Bai-The-Last-Line-Of-Defense-Understanding-And-Att
acking-Apple-File-System-On-IOS.pdf (visited on 03/06/2022).

[43] H. Bar-El et al. “The Sorcerer’s Apprentice Guide to Fault Attacks”. In:
Proceedings of the IEEE 94.2 (2006), pp. 370–382. DOI: 10.1109/JPROC.20
05.862424.

[44] Hagai Bar-El. Security implications of hardware vs Software cryptographic
modules. Tech. rep. Discretix Technologies, Jan. 2002.

[45] Elaine Barker and John Kelsey. Recommendation for Random Number Gen-
eration Using Deterministic Random Bit Generators. National Institute of
Standards and Technology, 2015. DOI: 10.6028/NIST.SP.800-90Ar1.

[46] Frédéric Basse. Amlogic S905 SoC: bypassing the (not so) Secure Boot to
dump the BootROM. 2016. URL: https://fredericb.info/2016/10/am
logic-s905-soc-bypassing-not-so.html (visited on 02/27/2022).

[47] Andrew Baumann. “Hardware is the New Software”. In: Proceedings of
the 2017 Workshop on Hot Topics in Operating Systems (HotOS). Whistler,
BC, Canada: ACM, 2017, pp. 132–137. ISBN: 978-1-4503-5068-6. DOI: 10
.1145/3102980.3103002. URL: http://doi.acm.org/10.1145/310298
0.3103002.

[48] Sean Beaupre. TRUSTNONE. http://theroot.ninja/disclosures
/TRUSTNONE_1.0-11282015.pdf. 2015.

[49] Ian Beer and Samuel Groß. A deep dive into an NSO zero-click iMessage
exploit: Remote Code Execution. Dec. 15, 2021. URL: https://googleproj
ectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-clic
k.html.

[50] Bellom, Maxime Rossi and Melotti, Damiano and Teuwen, Philippe. A
Titan M Odyssey. 2021. URL: https://i.blackhat.com/EU-21/Wednesd
ay/EU-21-Rossi-Bellom-2021_A_Titan_M_Odyssey-wp.pdf (visited
on 03/06/2022).

https://doi.org/10.1145/2660267.2660350
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://i.blackhat.com/eu-18/Thu-Dec-6/eu-18-Bai-The-Last-Line-Of-Defense-Understanding-And-Attacking-Apple-File-System-On-IOS.pdf
https://i.blackhat.com/eu-18/Thu-Dec-6/eu-18-Bai-The-Last-Line-Of-Defense-Understanding-And-Attacking-Apple-File-System-On-IOS.pdf
https://i.blackhat.com/eu-18/Thu-Dec-6/eu-18-Bai-The-Last-Line-Of-Defense-Understanding-And-Attacking-Apple-File-System-On-IOS.pdf
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html
https://fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html
https://doi.org/10.1145/3102980.3103002
https://doi.org/10.1145/3102980.3103002
http://doi.acm.org/10.1145/3102980.3103002
http://doi.acm.org/10.1145/3102980.3103002
http://theroot.ninja/disclosures/TRUSTNONE_1.0-11282015.pdf
http://theroot.ninja/disclosures/TRUSTNONE_1.0-11282015.pdf
https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html
https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html
https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html
https://i.blackhat.com/EU-21/Wednesday/EU-21-Rossi-Bellom-2021_A_Titan_M_Odyssey-wp.pdf
https://i.blackhat.com/EU-21/Wednesday/EU-21-Rossi-Bellom-2021_A_Titan_M_Odyssey-wp.pdf

BIBLIOGRAPHY 131

[51] Gal Beniamini. QSEE privilege escalation vulnerability and exploit (CVE-
2015-6639). 2016. URL: https://bits- please.blogspot.com/2016
/05/qsee-privilege-escalation-vulnerability.html (visited on
03/01/2022).

[52] Gal Beniamini. Trust Issues: Exploiting TrustZone TEEs. 2017. URL: https
://googleprojectzero.blogspot.com/2017/07/trust-issues-expl
oiting-trustzone-tees.html (visited on 03/01/2022).

[53] Gal Beniamini. TrustZone Kernel Privilege Escalation (CVE-2016-2431). 2016.
URL: http://bits-please.blogspot.com/2016/06/trustzone-kerne
l-privilege-escalation.html (visited on 03/01/2022).

[54] David Berard. Kinibi TEE: Trusted Application Exploitation. 2018. URL: ht
tps://www.synacktiv.com/posts/exploit/kinibi-tee-trusted-ap
plication-exploitation.html (visited on 03/01/2022).

[55] David J. Bernstein. Cache-timing attacks on AES. 2005. URL: http://cr.y
p.to/antiforgery/cachetiming-20050414.pdf.

[56] Kristof Beyls. [Llvm-Dev] Round Table on AArch64 Pauth ABI - Minutes.
E-mail. Oct. 15, 2020. URL: http://lists.llvm.org/pipermail/llvm-
dev/2020-October/145839.html (visited on 10/27/2020).

[57] Andrea Biondo et al. “The Guard’s Dilemma: Efficient Code-Reuse At-
tacks Against Intel SGX”. In: 27th USENIX Security Symposium (USENIX
Security 18). Baltimore, MD: USENIX Association, Aug. 2018, pp. 1213–
1227. ISBN: 978-1-939133-04-5. URL: https://www.usenix.org/confer
ence/usenixsecurity18/presentation/biondo.

[58] Dionysus Blazakis. The Apple Sandbox. 2011. URL: https://develope
r.android.com/guide/topics/permissions/overview (visited on
02/01/2021).

[59] Tyler Bletsch et al. “Jump-Oriented Programming: A New Class of Code-
Reuse Attack”. In: Proceedings of the 2011 ACM Asia Conference on Infor-
mation, Computer and Communications Security (ASIACCS). Hong Kong,
China: ACM, 2011, pp. 30–40. ISBN: 978-1-4503-0564-8. DOI: 10.1145/1
966913.1966919.

[60] David G Boak. A History of U.S. Communications Security. Vol. 1–2. Na-
tional Security Agency, 1973.

[61] Carsten Bock et al. “RIP-RH: Preventing Rowhammer-Based Inter-Process
Attacks”. In: Proceedings of the 2019 ACM Asia Conference on Computer
and Communications Security (ASIACCS). Asia CCS ’19. Auckland, New
Zealand: Association for Computing Machinery, 2019, pp. 561–572. ISBN:
9781450367523. DOI: 10.1145/3321705.3329827.

[62] Pietro Borrello et al. “Constantine: Automatic Side-Channel Resistance
Using Efficient Control and Data Flow Linearization”. In: Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications
Security (CCS). Apr. 21, 2021. DOI: 10.1145/3460120.3484583.

https://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
https://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
http://bits-please.blogspot.com/2016/06/trustzone-kernel-privilege-escalation.html
http://bits-please.blogspot.com/2016/06/trustzone-kernel-privilege-escalation.html
https://www.synacktiv.com/posts/exploit/kinibi-tee-trusted-application-exploitation.html
https://www.synacktiv.com/posts/exploit/kinibi-tee-trusted-application-exploitation.html
https://www.synacktiv.com/posts/exploit/kinibi-tee-trusted-application-exploitation.html
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://lists.llvm.org/pipermail/llvm-dev/2020-October/145839.html
http://lists.llvm.org/pipermail/llvm-dev/2020-October/145839.html
https://www.usenix.org/conference/usenixsecurity18/presentation/biondo
https://www.usenix.org/conference/usenixsecurity18/presentation/biondo
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/3321705.3329827
https://doi.org/10.1145/3460120.3484583

132 BIBLIOGRAPHY

[63] Thomas Bourgeat et al. “MI6: Secure Enclaves in a Speculative Out-of-
Order Processor”. In: Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). Columbus, OH, USA,
2019, pp. 42–56. DOI: 10.1145/3352460.3358310.

[64] C. Bozzato, R. Focardi, and Francesco Palmarini. “Shaping the Glitch:
Optimizing Voltage Fault Injection Attacks”. In: IACR Transactions on
Cryptographic Hardware Embed. Syst. 2019.2 (2019), pp. 199–224. DOI: 10
.13154/tches.v2019.i2.199-224.

[65] Ferdinand Brasser et al. “CAn’t Touch This: Software-Only Mitigation
against Rowhammer Attacks Targeting Kernel Memory”. In: Proceedings
of the 2017 USENIX Conference on Security Symposium. Vancouver, BC,
Canada: USENIX Association, 2017, pp. 117–130. ISBN: 9781931971409.

[66] Ferdinand Brasser et al. “SANCTUARY: ARMing TrustZone with User-
space Enclaves”. In: Proceedings of the 26th Annual Network and Distributed
System Security Symposium (NDSS). S, Feb. 2019.

[67] Ferdinand Brasser et al. “TyTAN: Tiny Trust Anchor for Tiny Devices”.
In: Proceedings of the 2015 Annual Design Automation Conference (DAC).
San Francisco, CA, USA, 2015, 34:1–34:6. DOI: 10.1145/2744769.27449
22.

[68] Ernie Brickell and Jiangtao Li. Enhanced Privacy ID from Bilinear Pairing.
Cryptology ePrint Archive, Report 2009/095. https://eprint.iacr.o
rg/2009/095. 2009.

[69] BSI. Evaluation of random number generators. Standard. BSI, 2013.

[70] Jo Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX
Kingdom with Transient Out-of-Order Execution”. In: Proceedings of the
2018 USENIX Security Symposium. Baltimore, MD: USENIX Association,
Aug. 2018, pp. 991–1008. ISBN: 978-1-939133-04-5. URL: https://www.u
senix.org/conference/usenixsecurity18/presentation/bulck.

[71] Jo Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX
Kingdom with Transient Out-of-Order Execution”. In: 27th USENIX Se-
curity Symposium (USENIX Security 18). 2018. URL: https://www.useni
x.org/conference/usenixsecurity18/presentation/bulck.

[72] Nicolas Carlini et al. “Control-Flow Bending: On the Effectiveness of
Control-Flow Integrity”. In: Proceedings of the 2015 USENIX Security Sym-
posium. Washington, DC, USA: USENIX Association, Aug. 2015, pp. 161–
176. ISBN: 978-1-931971-23-2. URL: https://www.usenix.org/conferen
ce/usenixsecurity15/technical-sessions/presentation/carlini.

[73] Pierre Carru. “Attack TrustZone with Rowhammer”. Presented at Gre-
Hack. 2017. URL: https://grehack.fr/data/2017/slides/GreHack17
_Attack_TrustZone_with_Rowhammer.pdf.

https://doi.org/10.1145/3352460.3358310
https://doi.org/10.13154/tches.v2019.i2.199-224
https://doi.org/10.13154/tches.v2019.i2.199-224
https://doi.org/10.1145/2744769.2744922
https://doi.org/10.1145/2744769.2744922
https://eprint.iacr.org/2009/095
https://eprint.iacr.org/2009/095
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://grehack.fr/data/2017/slides/GreHack17_Attack_TrustZone_with_Rowhammer.pdf
https://grehack.fr/data/2017/slides/GreHack17_Attack_TrustZone_with_Rowhammer.pdf

BIBLIOGRAPHY 133

[74] Nicholas P. Carter, Stephen W. Keckler, and William J. Dally. “Hard-
ware Support for Fast Capability-Based Addressing”. In: ACM SIGOPS
Operating Systems Review 28.5 (Nov. 1, 1994), pp. 319–327. DOI: 10.1145
/381792.195579.

[75] David Cerdeira et al. “SoK: Understanding the Prevailing Security Vul-
nerabilities in TrustZone-assisted TEE Systems”. In: Proceedings of the
2020 IEEE Symposium on Security and Privacy (S&P). San Francisco, CA,
USA, 2020. DOI: 10.1109/SP40000.2020.00061.

[76] Charles Garcia-Tobin, ARM Ltd. ARM CCA Hardware Architecture. 2021.
URL: https://static.linaro.org/connect/armcca/presentations
/CCATechEvent-210623-CGT-2.pdf (visited on 03/06/2022).

[77] Luke Cheeseman. D51429 [AArch64] Return Address Signing B Key Sup-
port. Sept. 2019. URL: https://reviews.llvm.org/D51429 (visited on
10/26/2020).

[78] Lily Chen, Joshua Franklin, and Andrew Regenscheid. Guidelines on
HardwareRooted Security in Mobile Devices. SP 800-16. Gaithersburg, MD,
United States, 2012.

[79] Nick Chen. “The Benefits Of Antifuse OTP”. In: Semiconductor Engineer-
ing (Dec. 19, 2016). URL: https://semiengineering.com/the-benefit
s-of-antifuse-otp/ (visited on 03/07/2022).

[80] Long Cheng et al. “Exploitation Techniques and Defenses for Data-Oriented
Attacks”. In: Proceedings of the 2019 IEEE Cybersecurity Development (SecDev).
Tysons Corner, VA, USA, 2019, pp. 114–128. DOI: 10.1109/SecDev.201
9.00022.

[81] Clang team. Hardware-Assisted AddressSanitizer Design Documentation.
2020. URL: https://clang.llvm.org/docs/HardwareAssistedAddr
essSanitizerDesign.html (visited on 09/06/2020).

[82] Thomas H Cormen et al. Introduction to Algorithms. 3rd. MIT Press, 2009.
ISBN: 9780262533058.

[83] Victor Costan, Ilia Lebedev, and Srinivas Devadas. “Sanctum: Minimal
Hardware Extensions for Strong Software Isolation”. In: Proceedings of
the 2016 USENIX Security Symposium. Austin, TX: USENIX Association,
Aug. 2016, pp. 857–874. ISBN: 978-1-931971-32-4. URL: https://www.us
enix.org/conference/usenixsecurity16/technical-sessions/pre
sentation/costan.

[84] Crispin Cowan et al. “Protecting Systems from Stack Smashing Attacks
with StackGuard”. In: Linux Expo. 1999.

[85] Cryptomathic. EMV Key Management – Explained. 2017. URL: https://w
ww.cryptomathic.com/hubfs/docs/cryptomathic_white_paper-emv
_key_management.pdf.

https://doi.org/10.1145/381792.195579
https://doi.org/10.1145/381792.195579
https://doi.org/10.1109/SP40000.2020.00061
https://static.linaro.org/connect/armcca/presentations/CCATechEvent-210623-CGT-2.pdf
https://static.linaro.org/connect/armcca/presentations/CCATechEvent-210623-CGT-2.pdf
https://reviews.llvm.org/D51429
https://semiengineering.com/the-benefits-of-antifuse-otp/
https://semiengineering.com/the-benefits-of-antifuse-otp/
https://doi.org/10.1109/SecDev.2019.00022
https://doi.org/10.1109/SecDev.2019.00022
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.cryptomathic.com/hubfs/docs/cryptomathic_white_paper-emv_key_management.pdf
https://www.cryptomathic.com/hubfs/docs/cryptomathic_white_paper-emv_key_management.pdf
https://www.cryptomathic.com/hubfs/docs/cryptomathic_white_paper-emv_key_management.pdf

134 BIBLIOGRAPHY

[86] Don Davis, Ross Ihaka, and Philip Fenstermacher. “Cryptographic Ran-
domness from Air Turbulence in Disk Drives”. In: Proceedings of Ad-
vances in Cryptology — CRYPTO ’94. Ed. by Yvo G. Desmedt. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1994, pp. 114–120. ISBN: 978-3-
540-48658-9.

[87] Remi Denis-Courmont et al. “Camouflage: Hardware-Assisted CFI for
the ARM Linux Kernel”. en. In: Proceedings of the 2020 ACM/IEEE An-
nual Design Automation Conference (DAC) (2020).

[88] Jack B Dennis. “Segmentation and the design of multiprogrammed com-
puter systems”. In: Journal of the ACM (JACM) 12.4 (1965), pp. 589–602.

[89] Alexander W. Dent. Secure Boot and Image Authentication. SP 800-16. Aug.
2012.

[90] Alexandra Dmitrienko et al. “Market-driven code provisioning to mo-
bile secure hardware”. In: Proceedings of the 2015 International Conference
on Financial Cryptography and Data Security (FC). Springer. 2015, pp. 387–
404.

[91] John R. Douceur. “The Sybil Attack”. In: Proceedings the 2002 Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS). Ed. by Peter Druschel,
M. Frans Kaashoek, and Antony I. T. Rowstron. Vol. 2429. Lecture Notes
in Computer Science. Cambridge, MA, USA: Springer, 2002, pp. 251–
260. DOI: 10.1007/3-540-45748-8_24.

[92] Wim van Eck. “Electromagnetic radiation from video display units: An
eavesdropping risk?” In: Computers & Security 4.4 (1985), pp. 269–286.
DOI: 10.1016/0167-4048(85)90046-x.

[93] J.-E. Ekberg, K. Kostiainen, and N. Asokan. “The Untapped Potential of
Trusted Execution Environments on Mobile Devices”. In: IEEE Security
& Privacy Magazine 12.4 (July 2014), pp. 29–37. ISSN: 1540-7993. DOI: 10
.1109/MSP.2014.38.

[94] Jan-Erik Ekberg. “Securing Software Architectures for Trusted Proces-
sor Environments; Programvarusystem för säkra processorarkitekturer”.
en. Ph.D Thesis. 2013, 91 + app. 139. ISBN: 978-952-60-3632-8. URL: http
://urn.fi/URN:ISBN:978-952-60-3632-8.

[95] Jan-Erik Ekberg and N Asokan. “External authenticated non-volatile
memory with lifecycle management for state protection in trusted com-
puting”. In: Proceedings of the 2009 International Conference on Trusted Sys-
tems (INTRUST). Springer. 2009, pp. 16–38.

[96] Jan-Erik Ekberg and N. Asokan. “External Authenticated Non-volatile
Memory with Lifecycle Management for State Protection in Trusted Com-
puting”. In: Proceedings of the 2010 International Conference on Trusted Sys-
tems (INTRUST). Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 16–38. DOI: 10.1007/978-3-642-14597-1_2.

https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1016/0167-4048(85)90046-x
https://doi.org/10.1109/MSP.2014.38
https://doi.org/10.1109/MSP.2014.38
http://urn.fi/URN:ISBN:978-952-60-3632-8
http://urn.fi/URN:ISBN:978-952-60-3632-8
https://doi.org/10.1007/978-3-642-14597-1_2

BIBLIOGRAPHY 135

[97] Karim Eldefrawy et al. “SMART: Secure and Minimal Architecture for
(Establishing a Dynamic) Root of Trust”. In: Proceedings of the 2012 An-
nual Network and Distributed System Security Symposium (NDSS). S, Feb.
2012. URL: http://www.eurecom.fr/publication/3536.

[98] ETSI. UICC Application Programming Interface for Java Card, Release 11.
https://www.etsi.org/deliver/etsi_ts/102200_102299/102241/1
1.00.00_60/ts_102241v110000p.pdf. 2012.

[99] Robert S. Fabry. “Dynamic verification of operating system decisions”.
In: Communications of the ACM 16.11 (1973), pp. 659–668.

[100] Nathaniel Wesley Filardo et al. “Cornucopia: Temporal Safety for CHERI
Heaps”. In: Proceedings of the 2020 IEEE Symposium on Security and Pri-
vacy (SP). San Francisco, CA, USA, May 2020.

[101] Security Requirements for Cryptographic Modules. NIST, 2019. DOI: 10.60
28/NIST.FIPS.140-3.

[102] Rusins Freivalds. “Probabilistic Machines Can Use Less Running Time”.
In: Proceedings of the 1977 IFIP Congress. Toronto, Canada, 1977. ISBN: 0-
7204-0755-9.

[103] Mark Gallagher et al. “Morpheus: A Vulnerability-Tolerant Secure Ar-
chitecture Based on Ensembles of Moving Target Defenses with Churn”.
In: Proceedings of the 2019 International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). New York,
NY, USA: Association for Computing Machinery, Apr. 4, 2019, pp. 469–
484. ISBN: 978-1-4503-6240-5. DOI: 10.1145/3297858.3304037. URL: ht
tps://doi.org/10.1145/3297858.3304037 (visited on 02/24/2021).

[104] GCC Team. GCC 9 Release Series — Changes, New Features, and Fixes. Aug.
2018. URL: https://gcc.gnu.org/gcc-9/changes.html (visited on
10/26/2020).

[105] GCC Wiki. Intel® Memory Protection Extensions (Intel® MPX) Support in
the GCC Compiler. June 2018. URL: https://gcc.gnu.org/wiki/In
tel%20MPX%20support%20in%20the%20GCC%20compiler (visited on
10/28/2020).

[106] General Dynamics Mission Systems. Advanced INFOSEC Machine (AIM).
2015. URL: https://gdmissionsystems.com/-/media/General-Dyna
mics/Cyber-and-Electronic-Warfare-Systems/PDF/Brochures/c
yber-advanced-infosec-machine-aim-datasheet.ashx (visited on
03/06/2022).

[107] General Dynamics Mission Systems. AIM II — Embeddable Programmable
Security). https://gdmissionsystems.com/-/media/General-Dynami
cs/Cyber-and-Electronic-Warfare-Systems/PDF/Brochures/cyber
-aim2-embeddable-programmable-security-datasheet.ashx. 2015.

http://www.eurecom.fr/publication/3536
https://www.etsi.org/deliver/etsi_ts/102200_102299/102241/11.00.00_60/ts_102241v110000p.pdf
https://www.etsi.org/deliver/etsi_ts/102200_102299/102241/11.00.00_60/ts_102241v110000p.pdf
https://doi.org/10.6028/NIST.FIPS.140-3
https://doi.org/10.6028/NIST.FIPS.140-3
https://doi.org/10.1145/3297858.3304037
https://doi.org/10.1145/3297858.3304037
https://doi.org/10.1145/3297858.3304037
https://gcc.gnu.org/gcc-9/changes.html
https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler
https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler
https://gdmissionsystems.com/-/media/General-Dynamics/Cyber-and-Electronic-Warfare-Systems/PDF/Brochures/cyber-advanced-infosec-machine-aim-datasheet.ashx
https://gdmissionsystems.com/-/media/General-Dynamics/Cyber-and-Electronic-Warfare-Systems/PDF/Brochures/cyber-advanced-infosec-machine-aim-datasheet.ashx
https://gdmissionsystems.com/-/media/General-Dynamics/Cyber-and-Electronic-Warfare-Systems/PDF/Brochures/cyber-advanced-infosec-machine-aim-datasheet.ashx
https://gdmissionsystems.com/-/media/General-Dynamics/Cyber-and-Electronic-Warfare-Systems/PDF/Brochures/cyber-aim2-embeddable-programmable-security-datasheet.ashx
https://gdmissionsystems.com/-/media/General-Dynamics/Cyber-and-Electronic-Warfare-Systems/PDF/Brochures/cyber-aim2-embeddable-programmable-security-datasheet.ashx
https://gdmissionsystems.com/-/media/General-Dynamics/Cyber-and-Electronic-Warfare-Systems/PDF/Brochures/cyber-aim2-embeddable-programmable-security-datasheet.ashx

136 BIBLIOGRAPHY

[108] Ronald Gil, Hamed Okhravi, and Howard Shrobe. “There’s a Hole in
the Bottom of the C: On the Effectiveness of Allocation Protection”. In:
Proceedings of the 2018 IEEE Cybersecurity Development. SecDev ’18. Cam-
bridge, MA, USA, Sept. 2018, pp. 102–109. ISBN: 978-1-5386-7662-2. DOI:
10.1109/SecDev.2018.00021.

[109] Ronald Gil, Hamed Okhravi, and Howard Shrobe. “There’s a Hole in
the Bottom of the C: On the Effectiveness of Allocation Protection”. In:
Proceedings of the 2018 IEEE Cybersecurity Development. 2018 IEEE Cyber-
security Development. SecDev ’18. Cambridge, MA, USA: IEEE, Sept.
2018, pp. 102–109. ISBN: 978-1-5386-7662-2. DOI: 10.1109/SecDev.201
8.00021. URL: https://ieeexplore.ieee.org/document/8543393/
(visited on 03/25/2019).

[110] GlobalPlatform. Card Specification v2.3.1. 2018. URL: https://globalpl
atform.org/specs-library/card-specification-v2-3-1/.

[111] GlobalPlatform. Root of Trust Definitions and Requirements v1.1. 2018. URL:
https://globalplatform.org/specs-library/globalplatform-roo
t-of-trust-definitions-and-requirements/.

[112] GlobalPlatform. Secure Channel Protocol ’03’ - Amendment D v1.1.2. 2019.
URL: https://globalplatform.org/specs-library/secure-channel
-protocol-03-amendment-d-v1-1-2/.

[113] GlobalPlatform. TEE Client API Specification, Version 1.0. https://glob
alplatform.org/specs-library/tee-client-api-specification/.
2010.

[114] GlobalPlatform. TEE Internal Core API Specification, Version 1.3.1. 2021.
URL: https://globalplatform.org/specs-library/tee-internal-c
ore-api-specification/.

[115] GlobalPlatform. TEE Management Framework, Version 1.0. 2016. URL: htt
ps://globalplatform.org/specs-library/tee-management-framew
ork-including-asn1-profile/.

[116] GlobalPlatform. TEE Management Framework: Open Trust Protocol (OTrP)
Profile v1.0. GPD_SPE_123. 2019. URL: https://globalplatform.org/s
pecs-library/tee-management-framework-open-trust-protocol.

[117] GlobalPlatform. TEE Secure ElementAPI v1.1.2. 2021. URL: https://glo
balplatform.org/specs-library/tee-secure-element-api/.

[118] GlobalPlatform. TEE Sockets API Specification v1.0.1, 1.0.2 & 1.0.3. 2017.
URL: https://globalplatform.org/specs-library/tee-sockets-ap
i-specification/.

[119] GlobalPlatform. TEE System Architecture, Version 1.2. 2018. URL: https:
//globalplatform.org/specs-library/tee-system-architecture-
v1-2/.

[120] GlobalPlatform. TEE Trusted User Interface API v1.0. 2013. URL: https:
//globalplatform.org/specs-library/trusted-user-interface-a
pi-v1/.

https://doi.org/10.1109/SecDev.2018.00021
https://doi.org/10.1109/SecDev.2018.00021
https://doi.org/10.1109/SecDev.2018.00021
https://ieeexplore.ieee.org/document/8543393/
https://globalplatform.org/specs-library/card-specification-v2-3-1/
https://globalplatform.org/specs-library/card-specification-v2-3-1/
https://globalplatform.org/specs-library/globalplatform-root-of-trust-definitions-and-requirements/
https://globalplatform.org/specs-library/globalplatform-root-of-trust-definitions-and-requirements/
https://globalplatform.org/specs-library/secure-channel-protocol-03-amendment-d-v1-1-2/
https://globalplatform.org/specs-library/secure-channel-protocol-03-amendment-d-v1-1-2/
https://globalplatform.org/specs-library/tee-client-api-specification/
https://globalplatform.org/specs-library/tee-client-api-specification/
https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://globalplatform.org/specs-library/tee-management-framework-including-asn1-profile/
https://globalplatform.org/specs-library/tee-management-framework-including-asn1-profile/
https://globalplatform.org/specs-library/tee-management-framework-including-asn1-profile/
https://globalplatform.org/specs-library/tee-management-framework-open-trust-protocol
https://globalplatform.org/specs-library/tee-management-framework-open-trust-protocol
https://globalplatform.org/specs-library/tee-secure-element-api/
https://globalplatform.org/specs-library/tee-secure-element-api/
https://globalplatform.org/specs-library/tee-sockets-api-specification/
https://globalplatform.org/specs-library/tee-sockets-api-specification/
https://globalplatform.org/specs-library/tee-system-architecture-v1-2/
https://globalplatform.org/specs-library/tee-system-architecture-v1-2/
https://globalplatform.org/specs-library/tee-system-architecture-v1-2/
https://globalplatform.org/specs-library/trusted-user-interface-api-v1/
https://globalplatform.org/specs-library/trusted-user-interface-api-v1/
https://globalplatform.org/specs-library/trusted-user-interface-api-v1/

BIBLIOGRAPHY 137

[121] GlobalPlatform. TEE Trusted User Interface Lowe-level API v1.0.1. 2018.
URL: https://globalplatform.org/specs-library/globalplatform
-technology-tee-trusted-user-interface-low-level-api-v1-0-
1/.

[122] GNU. GCC 8.4 Manual. 2018. URL: https://gcc.gnu.org/onlinedocs
/gcc-8.4.0/gcc (visited on 11/10/2020).

[123] Google. Android permissions. 2020. URL: https://developer.android
.com/guide/topics/permissions/overview (visited on 02/01/2021).

[124] Google. DM-verity. 2020. URL: https://source.android.com/securit
y/verifiedboot/dm-verity (visited on 03/06/2022).

[125] Google. FS-verity. 2020. URL: https://www.kernel.org/doc/html/lat
est/filesystems/fsverity.html (visited on 03/06/2022).

[126] Google. Kotlin and Android. 2020. URL: https://developer.android.c
om/kotlin (visited on 10/25/2020).

[127] Google. Pixel Security: Better, Faster, Stronger. 2016. URL: https://blog
.google/products/android-enterprise/pixel-security-better-f
aster-stronger/ (visited on 03/06/2022).

[128] Google. Security-Enhanced Linux in Android. 2021. URL: https://source
.android.com/security/selinux (visited on 02/01/2021).

[129] Robert M Graham. “Protection in an information processing utility”. In:
Communications of the ACM 11.5 (1968), pp. 365–369.

[130] GSMA. Generic Overlay SIM Security Assessment? https://www.gsma.c
om/publicpolicy/wp-content/uploads/2014/08/GSMA-Security-Gr
oup-Overlay_SIM_Security_Assessment_August_18_2014.pdf. 2014.

[131] GSMA. IMEI Blacklisting. Apr. 22, 2019. URL: https://www.gsma.com/s
ecurity/resources/imei-blacklisting/.

[132] GSMA. Understanding SIM Evolution. 2015. URL: https://www.gsmaint
elligence.com/research/?file=81d866ecda8b80aa4642e06b877ec2
65 (visited on 03/06/2022).

[133] Shay Gueron. A Memory Encryption Engine Suitable for General Purpose
Processors. Cryptology ePrint Archive, Report 2016/204. https://epri
nt.iacr.org/2016/204. 2016.

[134] J. Alex Halderman et al. “Lest We Remember: Cold-boot Attacks on En-
cryption Keys”. In: Communications of the ACM 52.5 (May 2009), pp. 91–
98. DOI: 10.1145/1506409.1506429.

[135] Shai Hasarfaty and Yanai Moyal. Behind the Scenes of Intel Security and
Manageability Engine. 2019. URL: https://i.blackhat.com/USA-19/We
dnesday/us-19-Hasarfaty-Behind-The-Scenes-Of-Intel-Securit
y-And-Manageability-Engine.pdf (visited on 03/06/2022).

https://globalplatform.org/specs-library/globalplatform-technology-tee-trusted-user-interface-low-level-api-v1-0-1/
https://globalplatform.org/specs-library/globalplatform-technology-tee-trusted-user-interface-low-level-api-v1-0-1/
https://globalplatform.org/specs-library/globalplatform-technology-tee-trusted-user-interface-low-level-api-v1-0-1/
https://gcc.gnu.org/onlinedocs/gcc-8.4.0/gcc
https://gcc.gnu.org/onlinedocs/gcc-8.4.0/gcc
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://source.android.com/security/verifiedboot/dm-verity
https://source.android.com/security/verifiedboot/dm-verity
https://www.kernel.org/doc/html/latest/filesystems/fsverity.html
https://www.kernel.org/doc/html/latest/filesystems/fsverity.html
https://developer.android.com/kotlin
https://developer.android.com/kotlin
https://blog.google/products/android-enterprise/pixel-security-better-faster-stronger/
https://blog.google/products/android-enterprise/pixel-security-better-faster-stronger/
https://blog.google/products/android-enterprise/pixel-security-better-faster-stronger/
https://source.android.com/security/selinux
https://source.android.com/security/selinux
https://www.gsma.com/publicpolicy/wp-content/uploads/2014/08/GSMA-Security-Group-Overlay_SIM_Security_Assessment_August_18_2014.pdf
https://www.gsma.com/publicpolicy/wp-content/uploads/2014/08/GSMA-Security-Group-Overlay_SIM_Security_Assessment_August_18_2014.pdf
https://www.gsma.com/publicpolicy/wp-content/uploads/2014/08/GSMA-Security-Group-Overlay_SIM_Security_Assessment_August_18_2014.pdf
https://www.gsma.com/security/resources/imei-blacklisting/
https://www.gsma.com/security/resources/imei-blacklisting/
https://www.gsmaintelligence.com/research/?file=81d866ecda8b80aa4642e06b877ec265
https://www.gsmaintelligence.com/research/?file=81d866ecda8b80aa4642e06b877ec265
https://www.gsmaintelligence.com/research/?file=81d866ecda8b80aa4642e06b877ec265
https://eprint.iacr.org/2016/204
https://eprint.iacr.org/2016/204
https://doi.org/10.1145/1506409.1506429
https://i.blackhat.com/USA-19/Wednesday/us-19-Hasarfaty-Behind-The-Scenes-Of-Intel-Security-And-Manageability-Engine.pdf
https://i.blackhat.com/USA-19/Wednesday/us-19-Hasarfaty-Behind-The-Scenes-Of-Intel-Security-And-Manageability-Engine.pdf
https://i.blackhat.com/USA-19/Wednesday/us-19-Hasarfaty-Behind-The-Scenes-Of-Intel-Security-And-Manageability-Engine.pdf

138 BIBLIOGRAPHY

[136] W.t. Holman, J.a. Connelly, and A.b. Dowlatabadi. “An integrated ana-
log/digital random noise source”. In: IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications 44.6 (1997), pp. 521–528.
DOI: 10.1109/81.586025.

[137] Merle E. Houdek, Frank G. Soltis, and Roy L. Hoffman. “IBM System/38
Support for Capability-Based Addressing”. In: Proceedings of the 1981
Annual Symposium on Computer Architecture (ISCA). Washington DC, USA:
IEEE Computer Society Press, May 12, 1981, pp. 341–348. DOI: 10.5555
/800052.801885.

[138] Hong Hu et al. “Data-Oriented Programming: On the Expressiveness of
Non-Control Data Attacks”. In: Proceedings of the 2016 IEEE Symposium
on Security and Privacy (SP). San Jose, CA, USA, 2016, pp. 969–986. DOI:
10.1109/SP.2016.62.

[139] Huawei. Huawei EMUI Security Whitepaper. 2020. URL: https://consum
er-img.huawei.com/content/dam/huawei-cbg-site/common/campai
gn/privacy/whitepaper/emui-10-security-technical-white-pape
r-v1.pdf (visited on 03/06/2022).

[140] IBM. 3845/3846 Data Encryption Devices. 1977. URL: http://ed-thelen
.org/comp-hist/IBM-ProdAnn/3845.pdf (visited on 03/06/2022).

[141] Intel. Control-Flow Enforcement Technology Specification (Revision 3.0). May
2019, p. 358. URL: https://software.intel.com/sites/default/fil
es/managed/4d/2a/control-flow-enforcement-technology-previe
w.pdf (visited on 11/09/2020).

[142] Intel Corporation. Intel Atom Processor Z2760 Datasheet. 2012. URL: http
s://www.intel.com/content/dam/www/public/us/en/documents/pr
oduct-briefs/atom-z2760-datasheet.pdf (visited on 03/06/2022).

[143] Intel Corporation. Proof of Elapsed Time. 2019. URL: https://github.co
m/hyperledger/sawtooth-poet (visited on 03/06/2022).

[144] ISO. Information technology — Security techniques — Random bit genera-
tion. Standard. ISO, 2011.

[145] Markus Jakobsson and Ari Juels. “Proofs of Work and Bread Pudding
Protocols”. In: Proceedings of the 2019 IFIP TC6/TC11 Joint Working Con-
ference on Communications and Multimedia Security (CMS). Ed. by Bart
Preneel. Vol. 152. Leuven, Belgium: Kluwer, 1999, pp. 258–272.

[146] Markus Jakobsson et al. “Implicit authentication for mobile devices”.
In: Proceedings of the 2009 USENIX Conference on Hot topics in Security.
Vol. 1. USENIX Association. 2009, pp. 25–27.

[147] Insu Jang et al. “Heterogeneous Isolated Execution for Commodity GPUs”.
In: Proceedings of the 2019 International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS). Provi-
dence, RI, USA: ACM, 2019, pp. 455–468. ISBN: 978-1-4503-6240-5. DOI:
10.1145/3297858.3304021.

https://doi.org/10.1109/81.586025
https://doi.org/10.5555/800052.801885
https://doi.org/10.5555/800052.801885
https://doi.org/10.1109/SP.2016.62
https://consumer-img.huawei.com/content/dam/huawei-cbg-site/common/campaign/privacy/whitepaper/emui-10-security-technical-white-paper-v1.pdf
https://consumer-img.huawei.com/content/dam/huawei-cbg-site/common/campaign/privacy/whitepaper/emui-10-security-technical-white-paper-v1.pdf
https://consumer-img.huawei.com/content/dam/huawei-cbg-site/common/campaign/privacy/whitepaper/emui-10-security-technical-white-paper-v1.pdf
https://consumer-img.huawei.com/content/dam/huawei-cbg-site/common/campaign/privacy/whitepaper/emui-10-security-technical-white-paper-v1.pdf
http://ed-thelen.org/comp-hist/IBM-ProdAnn/3845.pdf
http://ed-thelen.org/comp-hist/IBM-ProdAnn/3845.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/atom-z2760-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/atom-z2760-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/atom-z2760-datasheet.pdf
https://github.com/hyperledger/sawtooth-poet
https://github.com/hyperledger/sawtooth-poet
https://doi.org/10.1145/3297858.3304021

BIBLIOGRAPHY 139

[148] Yoongu Kim et al. “Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors”. In: Proceeding
of the 2014 Annual International Symposium on Computer Architecuture
(ISCA). 2014.

[149] P. Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In:
Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP). May
2019, pp. 1–19. DOI: 10.1109/SP.2019.00002.

[150] Paul Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power Anal-
ysis”. In: Proceedings of 1999 Advances in Cryptology (CRYPTO). Ed. by
Michael Wiener. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999,
pp. 388–397. DOI: 10.1007/3-540-48405-1_25.

[151] Paul Kocher et al. “Introduction to differential power analysis”. In: Jour-
nal of Cryptographic Engineering 1 (Apr. 2011), pp. 5–27. DOI: 10.1007/s
13389-011-0006-y.

[152] Patrick Koeberl et al. “TrustLite: A Security Architecture for Tiny Em-
bedded Devices”. In: Proceedings of the 2014 European Conference on Com-
puter Systems (EuroSys). Amsterdam, The Netherlands: ACM, 2014, 10:1–
10:14. ISBN: 978-1-4503-2704-6. DOI: 10.1145/2592798.2592824.

[153] François Koeune and François-Xavier Standaert. “A Tutorial on Physi-
cal Security and Side-Channel Attacks”. In: Foundations of Security Anal-
ysis and Design III: FOSAD 2004/2005 Tutorial Lectures. Ed. by Alessan-
dro Aldini, Roberto Gorrieri, and Fabio Martinelli. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 78–108. ISBN: 978-3-540-31936-8.
DOI: 10.1007/11554578_3. URL: https://doi.org/10.1007/11554578
_3.

[154] Oliver Kömmerling and Markus G Kuhn. “Design Principles for Tamper-
Resistant Smartcard Processors”. In: Proceedings of the 1999 USENIX Work-
shop on Smartcard Technology. 1999. URL: https://www.usenix.org/con
ference/usenix-workshop-smartcard-technology/design-princip
les-tamper-resistant-smartcard.

[155] Koen Koning et al. “No Need to Hide: Protecting Safe Regions on Com-
modity Hardware”. In: Proceedings of the 2017 European Conference on
Computer Systems. Belgrade, Serbia: ACM, 2017, pp. 437–452. ISBN: 978-
1-4503-4938-3. DOI: 10.1145/3064176.3064217.

[156] Iggy Krajci and Darren Cummings. “The Intel Mobile Processor”. In:
Android on x86: An Introduction to Optimizing for Intel® Architecture. Berke-
ley, CA: Apress, 2013, pp. 33–46. ISBN: 978-1-4302-6131-5. DOI: 10.1007
/978-1-4302-6131-5_5. URL: https://doi.org/10.1007/978-1-430
2-6131-5_5.

[157] Markus G Kuhn and Ross J Anderson. “Soft tempest: Hidden data trans-
mission using electromagnetic emanations”. In: Proceedings of the 1998
International Workshop on Information Hiding. Springer. 1998, pp. 124–
142.

https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/s13389-011-0006-y
https://doi.org/10.1007/s13389-011-0006-y
https://doi.org/10.1145/2592798.2592824
https://doi.org/10.1007/11554578_3
https://doi.org/10.1007/11554578_3
https://doi.org/10.1007/11554578_3
https://www.usenix.org/conference/usenix-workshop-smartcard-technology/design-principles-tamper-resistant-smartcard
https://www.usenix.org/conference/usenix-workshop-smartcard-technology/design-principles-tamper-resistant-smartcard
https://www.usenix.org/conference/usenix-workshop-smartcard-technology/design-principles-tamper-resistant-smartcard
https://doi.org/10.1145/3064176.3064217
https://doi.org/10.1007/978-1-4302-6131-5_5
https://doi.org/10.1007/978-1-4302-6131-5_5
https://doi.org/10.1007/978-1-4302-6131-5_5
https://doi.org/10.1007/978-1-4302-6131-5_5

140 BIBLIOGRAPHY

[158] Dmitrii Kuvaiskii et al. “SGXBOUNDS: Memory Safety for Shielded Ex-
ecution”. In: Proceedings of the 2017 European Conference on Computer Sys-
tems (EuroSys). Belgrade, Serbia: ACM, 2017, pp. 205–221. ISBN: 978-1-
4503-4938-3. DOI: 10.1145/3064176.3064192.

[159] C. A. Lakos. “Implementing BCPL on the Burroughs B6700”. In: Soft-
ware: Practice and Experience 10.8 (1980), pp. 673–683. ISSN: 1097-024X.
DOI: 10.1002/spe.4380100806.

[160] Butler W Lampson. “Protection”. In: ACM SIGOPS Operating Systems
Review 8.1 (1974), pp. 18–24.

[161] Nikolaus Lange. “Single-chip implementation of a cryptosystem for fi-
nancial applications”. In: Financial Cryptography. Ed. by Rafael Hirschfeld.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 135–144. ISBN:
978-3-540-69607-0.

[162] Michael Larabel. Intel Confirms CET Security Support For Tiger Lake. July 15,
2020. URL: https://www.phoronix.com/scan.php?page=news_item&p
x=Intel-CET-Tiger-Lake (visited on 11/15/2020).

[163] Michael Larabel. Intel MPX Support Is Dead With Linux 5.6. Jan. 31, 2020.
URL: https://www.phoronix.com/scan.php?page=news_item&px=Int
el-MPX-Is-Dead (visited on 11/15/2020).

[164] Adam Laurie et al. rompar: Masked ROM optical data extraction tool. 2013.
URL: https://github.com/AdamLaurie/rompar (visited on 08/12/2020).

[165] Dayeol Lee et al. “Keystone: An Open Framework for Architecting Trusted
Execution Environments”. In: Proceedings of the 2020 European Conference
on Computer Systems (EuroSys). Heraklion, Greece: Association for Com-
puting Machinery, 2020. ISBN: 9781450368827. DOI: 10.1145/3342195.3
387532.

[166] Hans Liljestrand et al. “PAC It up: Towards Pointer Integrity Using
ARM Pointer Authentication”. en. In: Proceedings of the 2019 USENIX
Security Symposium. Santa Clara, CA, USA: USENIX Association, Aug.
2019, pp. 177–194. ISBN: 978-1-939133-06-9.

[167] Jin Lin. Developoer Guidance for Hardware-enforced Stack Protection — Mi-
crosoft Tech Community. Feb. 24, 2021. URL: https://techcommunity.m
icrosoft.com/t5/windows-kernel-internals-blog/developer-gu
idance-for-hardware-enforced-stack-protection/ba-p/2163340
(visited on 01/16/2022).

[168] Moritz Lipp et al. “ARMageddon: Cache Attacks on Mobile Devices”.
In: Proceedings of the 2016 USENIX Security Symposium. 25th USENIX
Security Symposium. Austin, TX, USA, 2016, pp. 549–564. ISBN: 978-
1-931971-32-4. URL: https://www.usenix.org/conference/useni
xsecurity16/technical- sessions/presentation/lipp (visited on
03/06/2022).

https://doi.org/10.1145/3064176.3064192
https://doi.org/10.1002/spe.4380100806
https://www.phoronix.com/scan.php?page=news_item&px=Intel-CET-Tiger-Lake
https://www.phoronix.com/scan.php?page=news_item&px=Intel-CET-Tiger-Lake
https://www.phoronix.com/scan.php?page=news_item&px=Intel-MPX-Is-Dead
https://www.phoronix.com/scan.php?page=news_item&px=Intel-MPX-Is-Dead
https://github.com/AdamLaurie/rompar
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/3342195.3387532
https://techcommunity.microsoft.com/t5/windows-kernel-internals-blog/developer-guidance-for-hardware-enforced-stack-protection/ba-p/2163340
https://techcommunity.microsoft.com/t5/windows-kernel-internals-blog/developer-guidance-for-hardware-enforced-stack-protection/ba-p/2163340
https://techcommunity.microsoft.com/t5/windows-kernel-internals-blog/developer-guidance-for-hardware-enforced-stack-protection/ba-p/2163340
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp

BIBLIOGRAPHY 141

[169] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User Space”.
In: Proceedings of the 2018 USENIX Conference on Security Symposium. Bal-
timore, MD, USA: USENIX Association, 2018, pp. 973–990. ISBN: 978-1-
931971-46-1.

[170] LLVM. Scudo Hardened Allocator. 2020. URL: https://llvm.org/docs
/ScudoHardenedAllocator.html (visited on 10/27/2020).

[171] Peter Loscocco and Stephen Smalley. “Integrating Flexible Support for
Security Policies into the Linux Operating System.” In: Proceedings of the
2001 USENIX Annual Technical Conference. 2001, pp. 29–42.

[172] Aravind Machiry et al. “BOOMERANG: Exploiting the Semantic Gap
in Trusted Execution Environments”. In: Proceedings of the 2017 Annual
Network and Distributed System Security Symposium (NDSS). S, Feb. 2017.
DOI: 10.14722/ndss.2017.23227.

[173] Tarjei Mandt, Mathew Solni, and David Wang. Demystifying the Secure
Enclave Processor. 2016. URL: http://mista.nu/research/sep-paper
.pdf (visited on 03/06/2022).

[174] Tarjei Mandt, Mathew Solni, and David Wang. Demystifying the Secure
Enclave Processor. 2016. URL: https://www.blackhat.com/docs/us-16
/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Proc
essor.pdf (visited on 03/06/2022).

[175] Kristina Martsenko. Arm64: Compile the Kernel with Ptrauth Return Ad-
dress Signing. Mar. 2020. URL: https://git.kernel.org/pub/scm/lin
ux/kernel/git/torvalds/linux.git/commit/?id=74afda4016a7437
e6e425c3370e4b93b47be8ddf (visited on 10/26/2020).

[176] Ali Jose Mashtizadeh et al. “CCFI: Cryptographically Enforced Con-
trol Flow Integrity”. en. In: Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security. Denver, CO, USA: ACM
Press, 2015, pp. 941–951. ISBN: 978-1-4503-3832-5. DOI: 10.1145/281010
3.2813676.

[177] Daniel Maslowski. “Look at ME! Intel ME Firmware Investigation”.
FOSDEM 2020. 2020. URL: https://archive.fosdem.org/2020/sc
hedule/event/firmware_lam/attachments/slides/3872/export/ev
ents/attachments/firmware_lam/slides/3872/look_at_me_fosdem
20.pdf (visited on 03/07/2022).

[178] Saara Matala, Thomas Nyman, and N. Asokan. Historical insight into the
development of Mobile TEEs. 2019. URL: https://blog.ssg.aalto.fi/2
019/06/historical-insight-into-development-of.html (visited on
03/06/2022).

[179] Isaac Mbiti and David N. Weil. Mobile banking: The impact of MPesa in
Kenya. Working Paper 011-13. Brown University, Department of Eco-
nomics, 2011. URL: http://hdl.handle.net/10419/62662.

https://llvm.org/docs/ScudoHardenedAllocator.html
https://llvm.org/docs/ScudoHardenedAllocator.html
https://doi.org/10.14722/ndss.2017.23227
http://mista.nu/research/sep-paper.pdf
http://mista.nu/research/sep-paper.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=74afda4016a7437e6e425c3370e4b93b47be8ddf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=74afda4016a7437e6e425c3370e4b93b47be8ddf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=74afda4016a7437e6e425c3370e4b93b47be8ddf
https://doi.org/10.1145/2810103.2813676
https://doi.org/10.1145/2810103.2813676
https://archive.fosdem.org/2020/schedule/event/firmware_lam/attachments/slides/3872/export/events/attachments/firmware_lam/slides/3872/look_at_me_fosdem20.pdf
https://archive.fosdem.org/2020/schedule/event/firmware_lam/attachments/slides/3872/export/events/attachments/firmware_lam/slides/3872/look_at_me_fosdem20.pdf
https://archive.fosdem.org/2020/schedule/event/firmware_lam/attachments/slides/3872/export/events/attachments/firmware_lam/slides/3872/look_at_me_fosdem20.pdf
https://archive.fosdem.org/2020/schedule/event/firmware_lam/attachments/slides/3872/export/events/attachments/firmware_lam/slides/3872/look_at_me_fosdem20.pdf
https://blog.ssg.aalto.fi/2019/06/historical-insight-into-development-of.html
https://blog.ssg.aalto.fi/2019/06/historical-insight-into-development-of.html
http://hdl.handle.net/10419/62662

142 BIBLIOGRAPHY

[180] Jonathan M McCune et al. “Flicker: An Execution Infrastructure for TCB
Minimization”. In: Proceedings the 2008 ACM SIGOPS/EyroSys European
Conference on Computer Systems. Glasgow, UK, 2008, pp. 315–328. DOI:
10.1145/3246965.

[181] Frank McKeen et al. “Innovative Instructions and Software Model for
Isolated Execution”. In: Proceedings of the 2013 International Workshop on
Hardware and Architectural Support for Security and Privacy (HASP). Tel-
Aviv, Israel: Association for Computing Machinery, 2013. ISBN: 9781450321181.
DOI: 10.1145/2487726.2488368. URL: https://doi.org/10.1145/248
7726.2488368.

[182] Frank McKeen et al. “Intel Software Guard Extensions (Intel SGX) Sup-
port for Dynamic Memory Management Inside an Enclave”. In: Pro-
ceedings of the 2016 International Workshop on Hardware and Architectural
Support for Security and Privacy (HASP). HASP 2016. Seoul, Republic of
Korea: ACM, 2016, 10:1–10:9. ISBN: 978-1-4503-4769-3. DOI: 10.1145/29
48618.2954331.

[183] Michael McReynolds. Azure announces next generation Intel SGX confi-
dential computing VMs. 2021. URL: https://techcommunity.microsof
t.com/t5/azure-confidential-computing/azure-announces-nex
t-generation-intel-sgx-confidential-computing/ba-p/2839934
(visited on 01/29/2021).

[184] Masoud Mehrabi Koushki et al. “Is Implicit Authentication on Smart-
phones Really Popular? On Android Users’ Perception of “Smart Lock
for Android””. In: Proceedings of the 2020 International Conference on Human-
Computer Interaction with Mobile Devices and Services. 2020, pp. 1–17.

[185] Microsoft. A Detailed Description of the Data Execution Prevention (DEP)
Feature in Windows XP Service Pack 2, Windows XP Tablet PC Edition 2005,
and Windows Server 2003. 2006. URL: https://support.microsoft.com
/en-us/help/875352/a-detailed-description-of-the-data-execu
tion-prevention-dep-feature-in (visited on 09/05/2019).

[186] Markus Miettinen et al. “Conxsense: automated context classification
for context-aware access control”. In: Proceedings of the 9th ACM Asia
Symposium on Information, Computer and Communications security (ASI-
ACCS). 2014, pp. 293–304. DOI: 10.1145/2590296.2590337.

[187] Marvin Minsky. “Memoir on Inventing the Confocal Scanning Micro-
scope”. In: Scanning 10 (1988), pp. 128–138.

[188] Nagendra Modadugu and Bill Richardson. Building a Titan: Better secu-
rity through a tiny chip. 2018. URL: https://security.googleblog.com
/2018/10/building-titan-better-security-through.html (visited
on 03/06/2022).

https://doi.org/10.1145/3246965
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1145/2948618.2954331
https://doi.org/10.1145/2948618.2954331
https://techcommunity.microsoft.com/t5/azure-confidential-computing/azure-announces-next-generation-intel-sgx-confidential-computing/ba-p/2839934
https://techcommunity.microsoft.com/t5/azure-confidential-computing/azure-announces-next-generation-intel-sgx-confidential-computing/ba-p/2839934
https://techcommunity.microsoft.com/t5/azure-confidential-computing/azure-announces-next-generation-intel-sgx-confidential-computing/ba-p/2839934
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://doi.org/10.1145/2590296.2590337
https://security.googleblog.com/2018/10/building-titan-better-security-through.html
https://security.googleblog.com/2018/10/building-titan-better-security-through.html

BIBLIOGRAPHY 143

[189] Vishwath Mohan et al. “Opaque Control-Flow Integrity”. In: Proceed-
ings of the 2015 Network and Distributed System Security Symposium. San
Diego, CA, USA: Internet Society, 2015. ISBN: 978-1-891562-38-9. DOI: 10
.14722/ndss.2015.23271. URL: https://www.ndss-symposium.org/n
dss2015/ndss-2015-programme/opaque-control-flow-integrity/
(visited on 10/07/2019).

[190] Mondato. Skin SIM Technology: A Serious Challenge for Safaricom? 2014.
URL: https://blog.mondato.com/skin- sim- safari/ (visited on
03/06/2022).

[191] James Morris, Stephen Smalley, and Greg Kroah-Hartman. “Linux Se-
curity Modules: General security support for the Linux kernel”. In: Pro-
ceedings of the 2002 USENIX Security Symposium. ACM Berkeley, CA.
2002, pp. 17–31.

[192] Onur Mutlu et al. “A Modern Primer on Processing in Memory”. In:
arXiv preprint arXiv:2012.03112 (2020).

[193] Santosh Nagarakatte et al. “SoftBound: Highly Compatible and Com-
plete Spatial Memory Safety for C”. In: Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI). Dublin, Ireland: ACM, 2009, pp. 245–258. ISBN: 978-1-60558-
392-1. DOI: 10.1145/1542476.1542504.

[194] National Geographic. First computer bug. 1947. URL: https://www.nati
onalgeographic.org/thisday/sep9/worlds-first-computer-bug/.

[195] Dana Neustadter. True Random Number Generators for Heightened Security
in Any SoC. 2020. URL: https://www.synopsys.com/designware-ip/t
echnical-bulletin/true-random-number-generator-security-201
9q3.html.

[196] Phong Q. Nguyen and Igor E. Shparlinski. “The Insecurity of the Elliptic
Curve Digital Signature Algorithm with Partially Known Nonces”. In:
Designs, Codes and Cryptography 30.2 (Sept. 2003), pp. 201–217. DOI: 10
.1023/A:1025436905711.

[197] Nguyen and Shparlinski. “The Insecurity of the Digital Signature Algo-
rithm with Partially Known Nonces”. In: Journal of Cryptology 15.3 (June
2002), pp. 151–176. DOI: 10.1007/s00145-002-0021-3.

[198] NVIDIA Corporation. Trusted Little Kernel (TLK) for Tegra: FOSS Edition.
2015. URL: http://nv-tegra.nvidia.com/gitweb/?p=3rdparty/ote
_partner/tlk.git;a=blob_plain;f=documentation/Tegra_BSP_for
_Android_TLK_FOSS_Reference.pdf;hb=HEAD.

[199] Thomas Nyman et al. “CFI CaRE: Hardware-Supported Call and Re-
turn Enforcement for Commercial Microcontrollers”. In: Proceedings of
the 2017 Symposium on Research in Attacks, Intrusions, and Defenses (RAID).
Ed. by Marc Dacier et al. Cham: Springer International Publishing, 2017,
pp. 259–284. ISBN: 978-3-319-66332-6. DOI: 10.1007/978-3-319-66332
-6_12.

https://doi.org/10.14722/ndss.2015.23271
https://doi.org/10.14722/ndss.2015.23271
https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/opaque-control-flow-integrity/
https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/opaque-control-flow-integrity/
https://blog.mondato.com/skin-sim-safari/
https://doi.org/10.1145/1542476.1542504
https://www.nationalgeographic.org/thisday/sep9/worlds-first-computer-bug/
https://www.nationalgeographic.org/thisday/sep9/worlds-first-computer-bug/
https://www.synopsys.com/designware-ip/technical-bulletin/true-random-number-generator-security-2019q3.html
https://www.synopsys.com/designware-ip/technical-bulletin/true-random-number-generator-security-2019q3.html
https://www.synopsys.com/designware-ip/technical-bulletin/true-random-number-generator-security-2019q3.html
https://doi.org/10.1023/A:1025436905711
https://doi.org/10.1023/A:1025436905711
https://doi.org/10.1007/s00145-002-0021-3
http://nv-tegra.nvidia.com/gitweb/?p=3rdparty/ote_partner/tlk.git;a=blob_plain;f=documentation/Tegra_BSP_for_Android_TLK_FOSS_Reference.pdf;hb=HEAD
http://nv-tegra.nvidia.com/gitweb/?p=3rdparty/ote_partner/tlk.git;a=blob_plain;f=documentation/Tegra_BSP_for_Android_TLK_FOSS_Reference.pdf;hb=HEAD
http://nv-tegra.nvidia.com/gitweb/?p=3rdparty/ote_partner/tlk.git;a=blob_plain;f=documentation/Tegra_BSP_for_Android_TLK_FOSS_Reference.pdf;hb=HEAD
https://doi.org/10.1007/978-3-319-66332-6_12
https://doi.org/10.1007/978-3-319-66332-6_12

144 BIBLIOGRAPHY

[200] Thomas Nyman et al. “HardScope: Hardening Embedded Systems Against
Data-Oriented Attacks”. In: Proceedings of the 2019 Annual Design Au-
tomation Conference (DAC). Las Vegas, NV, USA: ACM, 2019, p. 63. DOI:
10.1145/3316781.3317836.

[201] Oleksii Oleksenko et al. “Intel MPX Explained: A Cross-Layer Analysis
of the Intel MPX System Stack”. In: Proceedings of the ACM on Measure-
ment and Analysis of Computing Systems 2.2 (June 2019), 28:1–28:30. ISSN:
2476-1249. DOI: 10.1145/3224423.

[202] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache Attacks and
Countermeasures: The Case of AES”. In: Proceedings of the 2006 CT-RSA.
Red. by David Hutchison et al. Vol. 3860. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 1–20. ISBN: 978-3-540-31033-4 978-3-540-
32648-9. DOI: 10.1007/11605805_1. (Visited on 02/27/2022).

[203] Bob Page. A Report on the Internet Worm. 1988. URL: https://www.ee.r
yerson.ca/~elf/hack/iworm.html (visited on 03/06/2022).

[204] David A Patterson and John L Hennessy. Computer Organization and De-
sign. 3rd ed. Morgan Kaufmann, 2005. ISBN: 1-55860-604-1.

[205] Greig Paul and James Irvine. “Take Control of Your PC with UEFI Se-
cure Boot”. In: Linux Journal 2015.257 (Sept. 2015). ISSN: 1075-3583.

[206] PaX Team. PaX PAGEEXEC Documentation. 2006. URL: https://pax.gr
security.net/docs/pageexec.txt (visited on 11/15/2020).

[207] Siani Pearson. Trusted Computing Platforms: TCPA Technology in Context.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 2002. ISBN: 0130092207.

[208] Mingliang Pei et al. The Open Trust Protocol (OTrP). Internet-Draft draft-
ietf-teep-opentrustprotocol-03. IETF Secretariat, May 2019. URL: http:
//www.ietf.org/internet-drafts/draft-ietf-teep-opentrustpro
tocol-03.txt.

[209] Alexander (Solar Designer) Peslyak. Getting around Non-Executable Stack
(and Fix). Aug. 1997. URL: https://seclists.org/bugtraq/1997/Aug
/63 (visited on 09/05/2019).

[210] Frank Piessens. “Security across abstraction layers: old and new exam-
ples”. In: Proceedings of the 2020 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW). Genoa, Italy, 2020. DOI: 10.1109
/EuroSPW51379.2020.00043.

[211] Sandro Pinto and Nuno Santos. “Demystifying Arm TrustZone: A Com-
prehensive Survey”. In: ACM Computing Surveys 51.6 (Jan. 2019), 130:1–
130:36. ISSN: 0360-0300. DOI: 10.1145/3291047.

[212] Marios Pomonis et al. “kRˆX: Comprehensive Kernel Protection against
Just-in-Time Code Reuse”. In: Proceedings of the 2017 European Conference
on Computer Systems (EuroSys). Belgrade, Serbia: ACM, 2017, pp. 420–
436. ISBN: 978-1-4503-4938-3. DOI: 10.1145/3064176.3064216.

https://doi.org/10.1145/3316781.3317836
https://doi.org/10.1145/3224423
https://doi.org/10.1007/11605805_1
https://www.ee.ryerson.ca/~elf/hack/iworm.html
https://www.ee.ryerson.ca/~elf/hack/iworm.html
https://pax.grsecurity.net/docs/pageexec.txt
https://pax.grsecurity.net/docs/pageexec.txt
http://www.ietf.org/internet-drafts/draft-ietf-teep-opentrustprotocol-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-teep-opentrustprotocol-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-teep-opentrustprotocol-03.txt
https://seclists.org/bugtraq/1997/Aug/63
https://seclists.org/bugtraq/1997/Aug/63
https://doi.org/10.1109/EuroSPW51379.2020.00043
https://doi.org/10.1109/EuroSPW51379.2020.00043
https://doi.org/10.1145/3291047
https://doi.org/10.1145/3064176.3064216

BIBLIOGRAPHY 145

[213] Changwoo Pyo and Gyungho Lee. “Encoding Function Pointers and
Memory Arrangement Checking against Buffer Overflow Attack”. en.
In: Information and Communications Security. Vol. 2513. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2002, pp. 25–36. ISBN: 978-3-540-00164-
5. DOI: 10.1007/3-540-36159-6_3.

[214] Qualcomm. Pointer Authentication on ARMv8.3: Design and Analysis of the
New Software Security Instructions. 2017.

[215] Inc. Qualcomm Technologies. Qualcomm Secure Processing Unit SPU230
Core Security Target Lite. 80-NU430-6 Rev. B. 2019. URL: https://www.c
ommoncriteriaportal.org/files/epfiles/1045b_pdf.pdf.

[216] Inc. Qualcomm Technologies. Qualcomm SPU FIPS 140-2 Non-Proprietary
Security Policy V1.3. 80-NU430-6 Rev. B. 2019. URL: https://csrc.nist
.gov/CSRC/media/projects/cryptographic-module-validation-pr
ogram/documents/security-policies/140sp3549.pdf.

[217] J. Quisquater and David Samyde. “ElectroMagnetic Analysis (EMA):
Measures and Counter-Measures for Smart Cards”. In: Proceedings of the
2001 International Conference on Research in Smart Cards. 2001.

[218] S. Ravi, A. Raghunathan, and S. Chakradhar. “Tamper resistance mech-
anisms for secure embedded systems”. In: Proceedings of the 2004 In-
ternational Conference on VLSI Design. 2004, pp. 605–611. DOI: 10.110
9/ICVD.2004.1260985.

[219] Elena Reshetova, Filippo Bonazzi, and N. Asokan. “Randomization Can’t
Stop BPF JIT Spray”. In: Proceedings of the 2017 International Conference on
Network and System Security. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2017, pp. 233–247. ISBN: 978-3-319-
64701-2. DOI: 10.1007/978-3-319-64701-2_17.

[220] Elena Reshetova et al. “Toward Linux Kernel Memory Safety”. In: Soft-
ware: Practice and Experience 48.12 (Dec. 2018), pp. 2237–2256. ISSN: 00380644.
DOI: 10.1002/spe.2638.

[221] Dan Rosenberg. QSEE Trustzone Kernel Integer Overflow Vulnerability.
Presented at Black Hat 2014. 2014. URL: https://www.blackhat.co
m/docs/us-14/materials/us-14-Rosenberg-Reflections-On-Trust
ing-TrustZone-WP.pdf.

[222] Xiaoyu Ruan. Platform Embedded Security Technology Revealed: Safeguard-
ing the Future of Computing with Intel Embedded Security and Management
Engine. 1st. Berkely, CA, USA: Apress, 2014. ISBN: 9781430265719.

[223] Mark Rutland. Arm64: Enable Pointer Authentication. Dec. 2018. URL: ht
tps://git.kernel.org/pub/scm/linux/kernel/git/torvalds/li
nux.git/commit/?id=04ca3204fa09f5f55c8f113b0072004a7b364ff4
(visited on 10/26/2020).

[224] Samsung. Samsung Knox. 2020. URL: https://docs.samsungknox.com
/admin/whitepaper.

https://doi.org/10.1007/3-540-36159-6_3
https://www.commoncriteriaportal.org/files/epfiles/1045b_pdf.pdf
https://www.commoncriteriaportal.org/files/epfiles/1045b_pdf.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3549.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3549.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3549.pdf
https://doi.org/10.1109/ICVD.2004.1260985
https://doi.org/10.1109/ICVD.2004.1260985
https://doi.org/10.1007/978-3-319-64701-2_17
https://doi.org/10.1002/spe.2638
https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-On-Trusting-TrustZone-WP.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-On-Trusting-TrustZone-WP.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-On-Trusting-TrustZone-WP.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=04ca3204fa09f5f55c8f113b0072004a7b364ff4
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=04ca3204fa09f5f55c8f113b0072004a7b364ff4
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=04ca3204fa09f5f55c8f113b0072004a7b364ff4
https://docs.samsungknox.com/admin/whitepaper
https://docs.samsungknox.com/admin/whitepaper

146 BIBLIOGRAPHY

[225] Samsung. Samsung Knox file encryption. 2020. URL: https://www.samsu
ngknox.com/en/blog/samsung-knox-file-encryption-1-0-the-fir
st-certified-integrated-dual-data-at-rest-solution-for-mob
ile-devices (visited on 03/06/2022).

[226] Ravi S Sandhu and Pierangela Samarati. “Access control: principle and
practice”. In: IEEE Communications Magazine 32.9 (1994), pp. 40–48.

[227] Stefan Santesson et al. X.509 Internet Public Key Infrastructure Online Cer-
tificate Status Protocol - OCSP. RFC 6960. June 2013. DOI: 10.17487/RFC6
960. URL: https://rfc-editor.org/rfc/rfc6960.txt.

[228] Uday Savagaonkar et al. Titan in depth: Security in plaintext. 2017. URL:
https://cloud.google.com/blog/products/gcp/titan-in-depth-s
ecurity-in-plaintext (visited on 03/06/2022).

[229] Michael D. Schroeder and Jerome H. Saltzer. “A Hardware Architec-
ture for Implementing Protection Rings”. In: Proceedings of the 1971 ACM
Symposium on Operating Systems Principles (SOSP). Palo Alto, CA, USA:
ACM, 1971, pp. 42–54. DOI: 10.1145/800212.806498. URL: http://doi
.acm.org/10.1145/800212.806498.

[230] Abu Sebastian et al. “Memory devices and applications for in-memory
computing”. In: Nature Nanotechnology 15.7 (2020), pp. 529–544. DOI: 10
.1038/s41565-020-0655-z.

[231] ARM Ltd. Security IP. 2020. URL: https://developer.arm.com/ip-pr
oducts/security-ip (visited on 10/22/2020).

[232] Arm Ltd. Security IP | CryptoCell-300 family – Arm Developer. 2020. URL:
https://developer.arm.com/ip-products/security-ip/cryptocel
l-300-family (visited on 10/22/2020).

[233] Arm Ltd. Security IP | CryptoCell-700 Family – Arm Developer. 2019. URL:
https://developer.arm.com/ip-products/security-ip/cryptocel
l-700-family (visited on 12/01/2019).

[234] Konstantin Serebryany et al. “AddressSanitizer: A Fast Address Sanity
Checker”. In: Proceedings of the 2012 USENIX Annual Technical Conference
(ATC). Boston, MA, USA: USENIX, 2012, pp. 309–318. ISBN: 978-931971-
93-5. URL: https://www.usenix.org/conference/atc12/technical-
sessions/presentation/serebryany.

[235] Kostya Serebryany. “ARM Memory Tagging Extension and How It Im-
proves C/C++ Memory Safety”. In: USENIX ;login: 44.2 (2019), pp. 12–
16.

[236] Hovav Shacham. “The Geometry of Innocent Flesh on the Bone: Return-
into-libc Without Function Calls (on the x86)”. In: Proceedings of the 2007
ACM Conference on Computer and Communications Security (CCS). Alexan-
dria, Virginia, USA: ACM, 2007, pp. 552–561. ISBN: 978-1-59593-703-2.
DOI: 10.1145/1315245.1315313. URL: http://doi.acm.org/10.1145
/1315245.1315313.

https://www.samsungknox.com/en/blog/samsung-knox-file-encryption-1-0-the-first-certified-integrated-dual-data-at-rest-solution-for-mobile-devices
https://www.samsungknox.com/en/blog/samsung-knox-file-encryption-1-0-the-first-certified-integrated-dual-data-at-rest-solution-for-mobile-devices
https://www.samsungknox.com/en/blog/samsung-knox-file-encryption-1-0-the-first-certified-integrated-dual-data-at-rest-solution-for-mobile-devices
https://www.samsungknox.com/en/blog/samsung-knox-file-encryption-1-0-the-first-certified-integrated-dual-data-at-rest-solution-for-mobile-devices
https://doi.org/10.17487/RFC6960
https://doi.org/10.17487/RFC6960
https://rfc-editor.org/rfc/rfc6960.txt
https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext
https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext
https://doi.org/10.1145/800212.806498
http://doi.acm.org/10.1145/800212.806498
http://doi.acm.org/10.1145/800212.806498
https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.1038/s41565-020-0655-z
https://developer.arm.com/ip-products/security-ip
https://developer.arm.com/ip-products/security-ip
https://developer.arm.com/ip-products/security-ip/cryptocell-300-family
https://developer.arm.com/ip-products/security-ip/cryptocell-300-family
https://developer.arm.com/ip-products/security-ip/cryptocell-700-family
https://developer.arm.com/ip-products/security-ip/cryptocell-700-family
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://doi.org/10.1145/1315245.1315313
http://doi.acm.org/10.1145/1315245.1315313
http://doi.acm.org/10.1145/1315245.1315313

BIBLIOGRAPHY 147

[237] Di Shen. Attacking your “Trusted Core” Exploiting TrustZone on Android.
Presented at Black Hat 2015. 2015. URL: https://www.blackhat.com/d
ocs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core
-Exploiting-Trustzone-On-Android.pdf.

[238] SIMalliance Ltd. Device Implementation Guidelines version 1.1. 2013. URL:
https://simalliance.org/wp-content/uploads/2015/03/SIMallia
nce_UICC_Device_Implementation_Guidelines-1.1.pdf.

[239] Sergei P. Skorobogatov and Ross J. Anderson. “Optical Fault Induc-
tion Attacks”. In: Proceedings of the Conference on Cryptographic Hardware
and Embedded Systems (CHES). Ed. by Burton S. Kaliski, çetin K. Koç,
and Christof Paar. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 2–12. DOI: 10.1007/3-540-36400-5_2.

[240] Asia Slowinska and Herbert Bos. “Pointless Tainting? Evaluating the
Practicality of Pointer Tainting”. In: Proceedings of the 2009 ACM Eu-
ropean Conference on Computer Systems (EuroSys). New York, NY, USA:
Association for Computing Machinery, Apr. 1, 2009, pp. 61–74. ISBN:
978-1-60558-482-9. DOI: 10.1145/1519065.1519073.

[241] Stephen Smalley and Robert Craig. “Security Enhanced (SE) Android:
Bringing Flexible MAC to Android.” In: Proceedings of the 2013 Network
and Distributed Systems Symposium (NDSS). Vol. 310. 2013, pp. 20–38.

[242] K. Z. Snow et al. “Just-in-Time Code Reuse: On the Effectiveness of Fine-
Grained Address Space Layout Randomization”. In: Proceedings of the
2013 IEEE Symposium on Security and Privacy (SP). SP ’13. San Francisco,
CA, USA, May 2013, pp. 574–588. DOI: 10.1109/SP.2013.45.

[243] Eugene H. Spafford. “The Internet Worm Program: An Analysis”. In:
ACM SIGCOMM Computer Communication Review. SIGCOMM 19.1 (Jan.
1989), pp. 17–57. ISSN: 0146-4833. DOI: 10.1145/66093.66095. URL: htt
p://doi.acm.org/10.1145/66093.66095.

[244] Evgenii Stepanov et al. “Memory Tagging in LLVM and Android”. 2020
Virtual LLVM Developers’ Meeting. Oct. 2020.

[245] Nigel Stephens. Developments in the Arm A-Profile Architecture: Armv8.6-
A. Sept. 25, 2019. URL: https://community.arm.com/developer/ip-p
roducts/processors/b/processors-ip-blog/posts/arm-architect
ure-developments-armv8-6-a (visited on 04/20/2020).

[246] G. Edward Suh et al. “AEGIS: Architecture for Tamper-evident and Tamper-
resistant Processing”. In: Proceedings of the 2003 Annual International Con-
ference on Supercomputing (ICS). San Francisco, CA, USA: ACM, 2003,
pp. 160–171. ISBN: 1-58113-733-8. DOI: 10.1145/782814.782838.

[247] G. Edward Suh et al. “Secure Program Execution via Dynamic Infor-
mation Flow Tracking”. In: ACM SIGPLAN Notices 39.11 (Oct. 7, 2004),
pp. 85–96. ISSN: 0362-1340. DOI: 10.1145/1037187.1024404. (Visited on
10/25/2021).

https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android.pdf
https://simalliance.org/wp-content/uploads/2015/03/SIMalliance_UICC_Device_Implementation_Guidelines-1.1.pdf
https://simalliance.org/wp-content/uploads/2015/03/SIMalliance_UICC_Device_Implementation_Guidelines-1.1.pdf
https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/10.1145/1519065.1519073
https://doi.org/10.1109/SP.2013.45
https://doi.org/10.1145/66093.66095
http://doi.acm.org/10.1145/66093.66095
http://doi.acm.org/10.1145/66093.66095
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
https://doi.org/10.1145/782814.782838
https://doi.org/10.1145/1037187.1024404

148 BIBLIOGRAPHY

[248] Harini Sundaresan. OMAP platform security features. 2003. URL: https:
//www.ti.com/pdfs/wtbu/omapplatformsecuritywp.pdf (visited on
03/07/2022).

[249] Synopsys Inc. Heartbleed Bug. 2014. URL: https://heartbleed.com/
(visited on 06/21/2021).

[250] Laszlo Szekeres et al. “SoK: Eternal War in Memory”. In: Proceedings of
the 2013 IEEE Symposium on Security and Privacy (SP). Washington, DC,
USA: IEEE Computer Society, 2013, pp. 48–62. ISBN: 978-0-7695-4977-4.
DOI: 10.1109/SP.2013.13.

[251] Ady Tal. Using Intel® MPX with the Intel® Software Development Emula-
tor. July 23, 2020. URL: https://www.intel.com/content/www/us/en
/develop/articles/using-intel-mpx-with-the-intel-software-d
evelopment-emulator.html (visited on 11/15/2020).

[252] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. “CLKSCREW:
Exposing the Perils of Security-Oblivious Energy Management”. In: Pro-
ceedings of the 2017 USENIX Security Symposium. Vancouver, BC: USENIX
Association, 2017, pp. 1057–1074. URL: https://www.usenix.org/conf
erence/usenixsecurity17/technical-sessions/presentation/tan
g.

[253] Bill Toulas. New Intel chips won’t play Blu-ray disks due to SGX deprecation.
2021. URL: https://www.bleepingcomputer.com/news/security/new
-intel-chips-wont-play-blu-ray-disks-due-to-sgx-deprecatio
n/ (visited on 01/29/2021).

[254] Florian Tramer and Dan Boneh. “Slalom: Fast, Verifiable and Private
Execution of Neural Networks in Trusted Hardware”. In: Proceedings of
the 2019 International Conference on Learning Representations. 2019. URL:
https://openreview.net/forum?id=rJVorjCcKQ.

[255] Meltem Sönmez Turan et al. Recommendation for the Entropy Sources Used
for Random Bit Generation. National Institute of Standards and Technol-
ogy, 2018. DOI: 10.6028/NIST.SP.800-90B.

[256] Jo Van Bulck et al. “LVI: Hijacking Transient Execution through Mi-
croarchitectural Load Value Injection”. In: Proceedings of the 2020 IEEE
Symposium on Security and Privacy (SP). 2020.

[257] Alexander Viand, Patrick Jattke, and Anwar Hithnawi. “SoK: Fully Ho-
momorphic Encryption Compilers”. In: Proceedings of the 2021 IEEE Sym-
posium on Security and Privacy (SP). May 2021, pp. 1092–1108. DOI: 10.1
109/SP40001.2021.00068.

[258] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. “Graviton: Trusted
Execution Environments on GPUs”. In: Proceedings of the 2018 USENIX
Symposium on Operating Systems Design and Implementation (OSDI). Carls-
bad, CA: USENIX Association, Oct. 2018, pp. 681–696. ISBN: 978-1-939133-
08-3. URL: https://www.usenix.org/conference/osdi18/presentat
ion/volos.

https://www.ti.com/pdfs/wtbu/omapplatformsecuritywp.pdf
https://www.ti.com/pdfs/wtbu/omapplatformsecuritywp.pdf
https://heartbleed.com/
https://doi.org/10.1109/SP.2013.13
https://www.intel.com/content/www/us/en/develop/articles/using-intel-mpx-with-the-intel-software-development-emulator.html
https://www.intel.com/content/www/us/en/develop/articles/using-intel-mpx-with-the-intel-software-development-emulator.html
https://www.intel.com/content/www/us/en/develop/articles/using-intel-mpx-with-the-intel-software-development-emulator.html
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.bleepingcomputer.com/news/security/new-intel-chips-wont-play-blu-ray-disks-due-to-sgx-deprecation/
https://www.bleepingcomputer.com/news/security/new-intel-chips-wont-play-blu-ray-disks-due-to-sgx-deprecation/
https://www.bleepingcomputer.com/news/security/new-intel-chips-wont-play-blu-ray-disks-due-to-sgx-deprecation/
https://openreview.net/forum?id=rJVorjCcKQ
https://doi.org/10.6028/NIST.SP.800-90B
https://doi.org/10.1109/SP40001.2021.00068
https://doi.org/10.1109/SP40001.2021.00068
https://www.usenix.org/conference/osdi18/presentation/volos
https://www.usenix.org/conference/osdi18/presentation/volos

BIBLIOGRAPHY 149

[259] John Von Neumann. “First Draft of a Report on the EDVAC”. In: IEEE
Annals of the History of Computing 15.4 (1993), pp. 27–75.

[260] Robert Watson et al. “Design and implementation of the Trusted BSD
MAC framework”. In: Proceedings of the 2003 DARPA Information Sur-
vivability Conference and Exposition. Vol. 1. IEEE. 2003, pp. 38–49.

[261] Robert N. M. Watson et al. Capability Hardware Enhanced RISC Instruc-
tions: CHERI Instruction-Set Architecture (Version 7). UCAM-CL-TR-927.
University of Cambridge, Computer Laboratory, 2019. URL: https://w
ww.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.html (visited on
11/30/2020).

[262] Samuel Weiser et al. “TIMBER-V: Tag-Isolated Memory Bringing Fine-
grained Enclaves to RISC-V”. In: Proceedings of the 2019 Network and Dis-
tributed System Security Symposium (NDSS). Feb. 2019. DOI: 10.14722/n
dss.2019.23068.

[263] J. Woodruff et al. “The CHERI Capability Model: Revisiting RISC in an
Age of Risk”. In: Proceedings of the ACM/IEEE 2014 International Sympo-
sium on Computer Architecture (ISCA). ACM/IEEE ISCA ’14. June 2014,
pp. 457–468. DOI: 10.1109/ISCA.2014.6853201. URL: https://doi.or
g/10.1109/ISCA.2014.6853201 (visited on 12/03/2020).

[264] Peter Wright. Spycatcher. Heinemann Publishers Australia, 1987.

[265] Leslie Xu. Secure the Enterprise with Intel® AES-NI. White Paper. Intel,
2010. URL: https://www.intel.com/content/www/us/en/enterprise
-security/enterprise-security-aes-ni-white-paper.html.

[266] Yuval Yarom and Katrina Falkner. “FLUSH+RELOAD: A High Resolu-
tion, Low Noise, L3 Cache Side-Channel Attack”. In: Proceedings of the
2014 USENIX Security Symposium. 2014.

[267] Yasukazu Yoshizawa et al. “Physical random numbers generated by ra-
dioactivity”. In: Journal of the Japanese Society of Computational Statistics
12.1 (1999), pp. 67–81. DOI: 10.5183/jjscs1988.12.67.

[268] Yu-cheng Yu. [PATCH v30 00/32] Control-flow Enforcement: Shadow Stack.
Aug. 30, 2021. URL: https://lore.kernel.org/linux-mm/2021083018
1528.1569-3-yu-cheng.yu@intel.com/T/ (visited on 01/16/2022).

[269] Jiyong Yu et al. “Data Oblivious ISA Extensions for Side Channel-Resistant
and High Performance Computing”. In: Proceedings of the 2019 Network
and Distributed System Security Symposium (NDSS). Network and Dis-
tributed System Security Symposium. San Diego, CA: Internet Society,
2019. ISBN: 978-1-891562-55-6. DOI: 10.14722/ndss.2019.23061. URL: h
ttps://doi.org/10.14722/ndss.2019.23061 (visited on 09/23/2021).

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.html
https://doi.org/10.14722/ndss.2019.23068
https://doi.org/10.14722/ndss.2019.23068
https://doi.org/10.1109/ISCA.2014.6853201
https://doi.org/10.1109/ISCA.2014.6853201
https://doi.org/10.1109/ISCA.2014.6853201
https://www.intel.com/content/www/us/en/enterprise-security/enterprise-security-aes-ni-white-paper.html
https://www.intel.com/content/www/us/en/enterprise-security/enterprise-security-aes-ni-white-paper.html
https://doi.org/10.5183/jjscs1988.12.67
https://lore.kernel.org/linux-mm/20210830181528.1569-3-yu-cheng.yu@intel.com/T/
https://lore.kernel.org/linux-mm/20210830181528.1569-3-yu-cheng.yu@intel.com/T/
https://doi.org/10.14722/ndss.2019.23061
https://doi.org/10.14722/ndss.2019.23061
https://doi.org/10.14722/ndss.2019.23061

150 BIBLIOGRAPHY

[270] Jiyong Yu et al. “Speculative Taint Tracking (STT): A Comprehensive
Protection for Speculatively Accessed Data”. In: Proceedings of the 2019
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
New York, NY, USA: Association for Computing Machinery, Oct. 12,
2019, pp. 954–968. ISBN: 978-1-4503-6938-1. DOI: 10.1145/3352460.335
8274.

[271] Ning Zhang et al. TruSpy: Cache Side-Channel Information Leakage from
the Secure World on ARM Devices. Cryptology ePrint Archive 2016/980.
2016. URL: https://eprint.iacr.org/2016/980 (visited on 03/06/2022).

[272] Tianwei Zhang, Yinqian Zhang, and Ruby B Lee. “CloudRadar: A Real-
Time Side-Channel Attack Detection System in Clouds”. In: Proceedings
of the 2016 International Symposium on Research in Attacks, Intrusions, and
Defenses (RAID). Paris, France, 2016. DOI: 10.1007/978-3-319-45719-
2_6.

[273] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang. “Return-Oriented Flush-
Reload Side Channels on ARM and Their Implications for Android De-
vices”. In: Proceedings of the 2016 ACM Conference on Computer and Com-
munications Security (ACM). New York, NY, USA: Association for Com-
puting Machinery, Oct. 24, 2016, pp. 858–870. ISBN: 978-1-4503-4139-4.
DOI: 10.1145/2976749.2978360.

[274] Qing Zhou et al. “True Random Number Generator Based on Mouse
Movement and Chaotic Hash Function”. In: Information Sciences 179.19
(Sept. 2009), pp. 3442–3450. ISSN: 0020-0255. DOI: 10.1016/j.ins.2009
.06.005.

[275] Jianping Zhu et al. “Enabling Rack-Scale Confidential Computing Us-
ing Heterogeneous Trusted Execution Environment”. In: Proceedings of
the 2020 IEEE Symposium on Security and Privacy. 2020 IEEE Symposium
on Security and Privacy (SP). San Francisco, California, USA, May 2020,
p. 16. DOI: 10.1109/SP40000.2020.00054.

[276] Jean-Karim Zinzindohoué et al. “HACL*: A Verified Modern Crypto-
graphic Library”. In: Proceedings of the 2017 ACM Conference on Computer
and Communications Security (CCS). 2017. DOI: 10.1145/3133956.31340
43.

https://doi.org/10.1145/3352460.3358274
https://doi.org/10.1145/3352460.3358274
https://eprint.iacr.org/2016/980
https://doi.org/10.1007/978-3-319-45719-2_6
https://doi.org/10.1007/978-3-319-45719-2_6
https://doi.org/10.1145/2976749.2978360
https://doi.org/10.1016/j.ins.2009.06.005
https://doi.org/10.1016/j.ins.2009.06.005
https://doi.org/10.1109/SP40000.2020.00054
https://doi.org/10.1145/3133956.3134043
https://doi.org/10.1145/3133956.3134043

	I Mobile Platform Security: Why?
	Introduction
	What motivated mobile platform security?
	Stakeholders
	Threat models
	Chains of trust

	Historical Overview
	Hardware security modules
	hsm in radio communication

	SIMs, mobile handsets, and smart cards
	Processor secure environments
	Trusted execution environments

	II Mobile Platform Security: How?
	Operating System Security
	General concepts
	Integrity
	Isolation
	Access control
	User authentication
	Software authentication
	Storage protection

	Run-time Hardware assistance
	Conclusions

	Platform integrity
	Supply chain security
	Provisioning
	Roots of trust
	Signing infrastructure
	Software updates

	Boot integrity
	Secure boot
	Authenticated boot
	Rollback Protection

	Secure storage
	Memory Technologies
	Access control to secure memories
	Cryptography on top of secure storage

	Hardware-assisted Isolation Mechanisms
	Split-world architectures
	TrustZone
	TrustZone-M

	Enclave architectures
	Intel sgx
	Emerging Enclave tee

	Security co-processors and multi-TEE architectures
	Intel Security & Management Engines
	Apple sep
	Google Titan M

	Cryptographic hardware
	Cryptographic modules
	Random number generators

	Run-time protection mechanisms
	Intel 64 architecture
	Intel mpx
	Intel cet

	ARMv8-A architecture
	ARMv8.3 pauth
	ARMv8.5 mte
	ARMv8.5 bti

	CHERI

	III What can go wrong?
	Software-level attacks
	Memory vulnerabilities
	Code-injection attacks
	Code-reuse attacks
	Data-only attacks
	Attacks on TEEs
	Attacks on hardware-assisted memory defenses

	CPU-level attacks
	Side-channel attacks
	Cache-timing side channels
	Transient execution vulnerabilities
	Mitigations

	Fault-injection attacks
	Rowhammer
	CLKSCREW
	Mitigations

	Physical attacks
	Power analysis
	Simple power analysis
	Differential power analysis

	Electromagnetic emissions
	Fault-injection attacks
	Glitching
	Focussed fault injection

	Microscopy and probing attacks

	IV What Next?
	Dealing with hardware compromise
	Multiple TEEs
	Application-specific techniques

	Towards next-generation TEEs
	CPU-based TEE architectures
	AEGIS
	Late-launch-based TEEs
	Sanctum
	Keystone
	MI6
	TrustLite & TyTAN
	Sanctuary
	TIMBER-V
	CURE
	Arm Confidential Compute Architecture

	Beyond TEEs
	Slalom
	Secure gpu accelerators
	Morpheus
	Blinded computing
	In-memory computing

	Conclusion

	Commercial TEE deployments

