
eGMT: Deep Fuzzing of Cryptographic Protocols Using Syntax 
Tree Mutation

Angel Lomeli
Aalto University, Finland

Security and Cloud Computing (SECCLO)
Arto Niemi

Huawei, Finland
Helsinki System Security Laboratory (HSSL)

eGMT proposal
• Walz et al1 : Generic Message Trees (GMTs)
• Syntax trees + fuzz operators for TLS 1.2
• Applicable only to the ClientHello message

• Our proposal: Enhanced Generic Message Tree (eGMT)
• Improved fuzz operators
• New operators such as ZeroOperator, BitFlipOperator
• Applicable to all handshake messages, including encrypted ones
• Focus on TLS 1.3, but also works for e.g. ASN.1/ECDSA signatures

Introduction
• Fuzz testing
• Allows detecting hard-to-reach vulnerabilities by feeding applications

mutated data and monitoring their behavior
• Common tools like AFL and Honggfuzz: good for file-based fuzzing
• Interactive protocols
• Messages depend on earlier ones
• Require specialized fuzzers such as AFLNet

• Cryptographic protocols (like TLS)
• Messages must pass cryptographic checks (e.g. signatures, MACs)
• Fuzzing still a major challenge

• This work:
• New syntax tree mutation based fuzzer for cryptographic protocols
• Test target: htls (HSSL’s experimental small-footprint, TEE-

compatible, dependency-free TLS 1.3 implementation)

Vulnerabilities found
• Missing ECDH public key validation. Any arbitrary (e.g.

attacker-injected) value is accepted as an ECDH key share.
• Segmentation fault in log print. An error causes an

(almost) infinite loop that makes the application read from a
restricted memory address.

• Null pointer dereference in Finished message. A
short signature triggers an attempt to memcpy from a NULL
address.

• Segmentation fault in certificate validation. Invalid
memory read when parsing invalid X.509 certificates.

• Wrong length in TLV objects. Incorrect lengths in ASN.1
structures crash the application.

• Garbage bytes after signature. Signatures with garbage
bytes are incorrectly accepted.

• Non-zero compression methods. Messages with non-
zero compression field are accepted, violating the
specification.

• Too many same-type extensions. Two or more
extensions of the same type are accepted when they should
not.

• Invalid session ID. Invalid session IDs are incorrectly
accepted.

• Missing required extensions. The app ignores when a
message misses a required extension.

References
1. A. Walz and A. Sikora, “Exploiting Dissent: Towards Fuzzing-Based Differential Black-Box Testing of TLS Implementations,” IEEE Transactions on 
Dependable and Secure Computing, vol. 17, pp. 278–291, 2020.

Finished

HandshakeType
0x14 -> Finished

Length
0x000020 -> 32 bytes
0x000003 -> 3 bytes

VerifyData
0x30440220ed98… (32 bytes)
0x304402 -> 3 bytes

eTrunc
Op

LengthRepair

ClientHello

ContentType
0x16 -> Handshake

ProtocolVersion
0x0303 -> TLS 1.2

Length
0x0096 -> 150 bytes
0x0000 -> 0 bytes

Fragment

eVoid
Op

LengthRepair

Extensions

Extension0 Extension1 Extension
N+1

ExtensionType
0x0033 -> KeyShare

ExtensionLength
0x0047 -> 71 bytes

…

eDup
Op

Extension 
Data

ExtensionType
0x0033 -> KeyShare

ExtensionLength
0x0047 -> 71 bytes

Extension 
Data

ClientHello

ContentType
0x16 -> Handshake

ProtocolVersion
0x0303 -> TLS 1.2

Length
0x0096 -> 150 bytes

Fragment

HandshakeType
0x01 -> ClientHello

Length
0x000092 -> 146 bytes

Handshake

ProtocolVersion
0x0303 -> TLS 1.2

Random
0x497f54f1a126… … Extensions

Extension0 Extension1 ExtensionN…


