A”

Aalto University
School of Science

Introduction

Ve

HUAWEI

Fuzz testing

 Allows detecting hard-to-reach vulnerabilities by feeding applications

mutated data and monitoring their behavior

Common tools like AFL and Honggfuzz: good for file-based fuzzing

Interactive protocols
* Messages depend on earlier ones
» Require specialized fuzzers such as AFLNet
Cryptographic protocols (like TLS)

» Messages must pass cryptographic checks (e.g. signatures, MACs)
» Fuzzing still a major challenge

This work:

Angel Lomeli
Aalto University, Finland
Security and Cloud Computing (SECCLO)

Arto Niemi

Huawei, Finland
Helsinki System Security Laboratory (HSSL)

eGMT: Deep Fuzzing of Cryptographic Protocols Using Syntax
Tree Mutation

16 03 01 01 2C 01 00 01 28 03 03 40C7 0OE 24 30 01 B9 6D 8C 63 68 77 38 69 64 32 D3 E6 F9 49 10 7A

{0:TLSRecord} TLSRecord
|-=[0: type] RecordType | 16
|==[1l:version] ProtocolVersion | 03 01
|--[2:1length] Integer | 01 2C
-={3:msqg} HandshakeMessage
|--[0: type] HandshakeType | 01
|=-=[1:1length] Integer | 00 01 28
--{2:msqg} ClientHello
|-—[0:version] ProtocolVersion | 03 03
|=-=[1:random] OpaqueBlob | 40 C7 OE 24 30 01 B9 6eD
| | 8C 63 68 77 38 69 64 32
| | D3 E6 F9 49 10 7A AB AD
I | 84 50 CD FF D6 A2 66 E4
|-—-[2:session_id length] Integer | 00
|-=[3:session_id] OpaqueBlob |

» New syntax tree mutation based fuzzer for cryptographic protocols

 Test target:

htls (HSSL’s experimental small-footprint,

compatible, dependency-free TLS 1.3 implementation)

ClientHello

ContentType
0x16 -> Handshake

Length
0x0096 -> 150 bytes

ProtocolVersion
Ox0303->TLS 1.2

Length
0x000092 -> 146 bytes

HandshakeType
0x01 -> ClientHello

ProtocolVersion Random

0x0303 -> TLS 1.2 0x497f54f1a126...

Vulnerabilities found

Missing ECDH public key validation. Any arbitrary (e.g.
attacker-injected) value is accepted as an ECDH key share.
Segmentation fault in log print. An error causes an
(almost) infinite loop that makes the application read from a
restricted memory address.
Null pointer dereference in Finished message. A
short signature triggers an attempt to memcpy from a NULL
address.
Segmentation fault in certificate validation. Invalid
memory read when parsing invalid X.509 certificates.
Wrong length in TLV objects. Incorrect lengths in ASN.1
structures crash the application.
Garbage bytes after signature. Signatures with garbage
bytes are incorrectly accepted.
Non-zero compression methods. Messages with non-
zero compression field are accepted, violating the
specification.
Too many same-type extensions. Two or more
extensions of the same type are accepted when they should
not.
Invalid session ID. Invalid session IDs are incorrectly
accepted.
Missing required extensions. The app ignores when a

essage misses a required extension.

Handshake

TEE-

| -—{4:cipher suites}

ClientHello cipher suites

| [=-=[0: N] Integer | 00 92
| ——{1:_V} DynamicVector
| | -—[0:CipherSuite] CipherSuite | CO 30

eGMT proposal
« Walz et al' : Generic Message Trees (GMTSs)

» Syntax trees + fuzz operators for TLS 1.2

» Applicable only to the ClientHello message

* Qur proposal: Enhanced Generic Message Tree (eGMT)

» Improved fuzz operators

» New operators such as ZeroOperator, BitFlipOperator

« Applicable to all handshake messages, including encrypted ones

* Focus on TLS 1.3, but also works for e.g. ASN.1/ECDSA signatures

Finished

LengthRepair

HandshakeType
0x14 -> Finished

VerifyData
0x30440220ed98{32 bytes}

Length
Ox000020 > 32 bytes

ContentType
0x16 -> Handshake

eDup
Op

ExtensionO

ExtensionType

0x0033 -> KeyShare

ExtensionLength
0x0047 -> 71 bytes

Extension
Data

0x304402 -> 3 bytes

0x000003 -> 3 bytes

ClientHello

Length

0x0D096->150-bytes
0x0000 -> 0 bytes

ProtocolVersion
Ox0303 ->TLS 1.2

ExtensionType

0x0033 -> KeyShare

ExtensionLength
0x0047 -> 71 bytes

Extension
Data

References

1. A. Walz and A. Sikora, “Exploiting Dissent: Towards Fuzzing-Based Differential Black-Box Testing of TLS Implementations,” IEEE Transactions on
Dependable and Secure Computing, vol. 17, pp. 278—291, 2020.

