
eGMT: Deep Fuzzing of Cryptographic Protocols Using Syntax 
Tree Mutation

Angel Lomeli
Aalto University, Finland

Security and Cloud Computing (SECCLO)
Arto Niemi

Huawei, Finland
Helsinki System Security Laboratory (HSSL)

eGMT proposal
• Walz et al1 : Generic Message Trees (GMTs)
• Syntax trees + fuzz operators for TLS 1.2
• Applicable only to the ClientHello message

• Our proposal: Enhanced Generic Message Tree (eGMT)
• Improved fuzz operators
• New operators such as ZeroOperator, BitFlipOperator
• Applicable to all handshake messages, including encrypted ones
• Focus on TLS 1.3, but also works for e.g. ASN.1/ECDSA signatures

Introduction
• Fuzz testing
• Allows detecting hard-to-reach vulnerabilities by feeding applications

mutated data and monitoring their behavior
• Common tools like AFL and Honggfuzz: good for file-based fuzzing
• Interactive protocols
• Messages depend on earlier ones
• Require specialized fuzzers such as AFLNet

• Cryptographic protocols (like TLS)
• Messages must pass cryptographic checks (e.g. signatures, MACs)
• Fuzzing still a major challenge

• This work:
• New syntax tree mutation based fuzzer for cryptographic protocols
• Test target: htls (HSSL’s experimental small-footprint, TEE-

compatible, dependency-free TLS 1.3 implementation)

Vulnerabilities found
• Missing ECDH public key validation. Any arbitrary (e.g.

attacker-injected) value is accepted as an ECDH key share.
• Segmentation fault in log print. An error causes an

(almost) infinite loop that makes the application read from a
restricted memory address.

• Null pointer dereference in Finished message. A
short signature triggers an attempt to memcpy from a NULL
address.

• Segmentation fault in certificate validation. Invalid
memory read when parsing invalid X.509 certificates.

• Wrong length in TLV objects. Incorrect lengths in ASN.1
structures crash the application.

• Garbage bytes after signature. Signatures with garbage
bytes are incorrectly accepted.

• Non-zero compression methods. Messages with non-
zero compression field are accepted, violating the
specification.

• Too many same-type extensions. Two or more
extensions of the same type are accepted when they should
not.

• Invalid session ID. Invalid session IDs are incorrectly
accepted.

• Missing required extensions. The app ignores when a
message misses a required extension.
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