

UNIVERSITY OF HELSINKI FACULTY OF SCIENCE DEPARTMENT OF COMPUTER SCIENCE

Multi-party Private Set Operations with an External Decider

Sara Ramezanian, Tommi Meskanen and Valtteri Niemi {sara.ramezanian, tommi.meskanen, valtteri.niemi@helsinki.fi}

Private Set Operation (PSO)

- A cryptographic protocol for two or more parties.
 All / some of the parties have an input set of private elements.
- ✓ All / some of the parties want to compute the output of one or more set operations of the input

sets.

Goal is to compute the output without revealing anything about the elements that are not in the output.

External Decider (D) is a special party that does not have an input set, and is the only party who learns the output of the protocol [1].

Examples:

- Secure electronic voting.
- Privacy-preserving parental control [2].
- Decentralized social networking platform such as HELIOS [3], to obtain common interests between different groups of friends.

Our Contribution:

- A general solution to any PSO problem with D and with limited universe (PSO-Lim) by using a non-deterministic additively homomorphic cryptosystem.
- A general solution to find cardinality and emptiness of the output to any PSO problem with D and with unlimited universe (PSO-Unlim) by using keyed hash function.

PSO-Lim Protocol for parties P_1, \dots, P_n and a decider D: Private sets S_1, \dots, S_n are subsets of

 $U = \{a_1, \dots, a_u\}$. The decider wants to learn $S_T = (A_{1,1} \cup \dots \cup A_{1,\alpha_1}) \cap \dots \cap (A_{\beta,1} \cup \dots \cup A_{\beta,\alpha_\beta})$ where $1 \le \alpha_i \le n, \beta \in \mathbb{N}$, and each $A_{i,j} \in \{S_1, \dots, S_n, \overline{S_1}, \dots, \overline{S_n}\}$.

Set-up phase

- D creates public and private keys for Paillier cryptosystem, and sends public keys and U to parties. Parties create a shared repository.
- Each P_i creates a set containing many instances of enc(0), and another set containing many instances of enc(r), where r is a random number chosen for that instance.
- 3. Parties create β vectors W^k of length u, where $W^k = (enc(r_{1,k}), ..., enc(r_{u,k}))$, when $1 \le k \le \beta$.

Performance: If public key in Paillier is of length 4096

On-line phase

- 1. For every vector W^k each P_i modifies the vector as follows. If $u_j \in S_i$ then P_i replaces W_j^k with enc(0). Otherwise, P_i multiplies W_j^k with enc(0).
- After all the vectors W^k have been computed, one of the parties (e.g., P_n) creates a vector Z where Z_j = Π^β_{k=1} W^k_j. Party P_n sends vector Z to D.
 D decrypts Z If dec(Z_i) = 0 then a_i ∈ S.
- 3. D decrypts Z. If $dec(Z_j) = 0$, then $a_j \in S_T$. Otherwise, a_j is not in S_T .

$$n = 3$$
 $n = 5$ $n = 10$ $n = 15$ $n = 20$

bits and we assume that $\alpha = \beta = n$, the numbers in the table show the required time for each party to modify *Z* with a single thread. When $u = 2^2, 2^5, 2^7, 2^{10}$ the decider needs 0.02, 0.17, 0.68, 5.51 seconds respectively, to decrypt this vector with 32 threads.

$u = 2^2$	0.001	0.002	0.003	0.005	0.007
$u = 2^5$	0.008	0.013	0.025	0.039	0.05
$u = 2^7$	0.031	0.05	0.1	0.15	0.2
$u = 2^{10}$	0.237	0.391	0.786	1.178	1.56

[1]: Ramezanian, S., Meskanen, T., & Niemi, V. Multi-party Private Set Operations with an External Decider. In 35th DBSEC (pp. 117-135). Springer, Cham. 2021.
 [2]: Ramezanian, S., Meskanen, T., & Niemi, V. Parental Control with Edge Computing and 5G Networks. In 29th FRUCT Conference (pp. 290-300). IEEE. 2021.
 [3]: HELIOS project homepage (2022). Retrieved from https://helios-h2020.eu/

