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Reinforcement Learning

In RL, an agent interacts with an environment to optimize its policy

• Policy: Decision making strategy,

• State-action value function: Helps optimizing the policy in discrete tasks, Q(s,a)
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Deep Reinforcement Learning (DRL)

DRL learns successful policies directly from high-dimensional inputs 

• Reinforcement Learning (RL) defines the objective: maximize future reward 

• Deep Neural Networks (DNN) provides the mechanism: approximates policy
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Adversarial Examples in DNN and DRL 

Adversarial perturbation is added 

• DNNs[1]: ... into clean image → Classifier is victim, wrong label

• DRLs[2] : ... into clean state → Policy is victim, wrong action

In DRL, 

• no 1-1 mapping between states and actions (no pre-defined labels)

• one successful adversarial example might not affect the task

41. Szegedy et al., “Intriguing Properties of Neural Networks” arXiv, 2013. https://arxiv.org/abs/1312.6199v4

2. Huang et al. “Adversarial Attacks on Neural Network Policies”, arXiv 2017. https://arxiv.org/pdf/1702.02284.pdf
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Adversary Model

Adversary: 

• wants a reinforcement learning agent to fail its task

• uses state-action value function Q(s,a) to generate sub-optimal actions for discrete tasks

Adversarial capabilities:

• has the knowledge of 

• RL algorithm and

• DNN model used for victim’s policy

• cannot reset environment, replay earlier state,

or induce a delay during the task 
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Realistic Adversaries in DRL

A realistic attack 

• cannot change the inner workings of victim agent (e.g. short-term memory, received rewards)

• should compute + add the perturbation fast enough to be implemented in real time 

• The online cost should be less than

Prior attacks are not realistic, they

• are too slow to be mounted in real time[1,2]

• modify the short term memory of victim[3]
Observation 𝑡 Observation 𝑡 + 1action

Can we effectively fool DRL policies in real-time?

1. Lin, Yen-Chen, et al. "Tactics of adversarial attack on deep reinforcement learning agents." IJCAI 2017. https://arxiv.org/abs/1703.06748

2. Pan, Xinlei, et al. "Characterizing Attacks on Deep Reinforcement Learning." AAMAS 2022. https://arxiv.org/abs/1907.09470

3. Huang et al. “Adversarial Attacks on Neural Network Policies”, arXiv 2017. https://arxiv.org/pdf/1702.02284

https://arxiv.org/abs/1703.06748
https://arxiv.org/abs/1907.09470
https://arxiv.org/pdf/1702.02284
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State- and Observation-Agnostic Perturbations

Universal Adversarial Perturbations (UAP)[1] in DRL settings using

• Find a sufficiently small perturbation 

that results in sub-optimal actions for every perturbed state

• State-agnostic (UAP-S): Perturbation is uniform across different states but is not uniform 

between the observations within a state

• Observation-agnostic (UAP-O): Perturbation is uniform across all observations

7
1. Moosavi-Dezfooli, Seyed-Mohsen, et al. "Universal adversarial perturbations." CVPR 2017. https://arxiv.org/abs/1610.08401
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https://arxiv.org/abs/1610.08401
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State- and Observation-Agnostic Perturbations

1. Collect training data by observing a full episode

2. Clone DNN (i.e., approximated state-action 

value function) of victim agent to an 

adversary’s agent 

3. Sanitize the training data by choosing only 

critical states

4. Compute the perturbation using Algorithm 1 in 

an offline manner

5. Add the perturbation to any other episode 

during the task

8
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Experimental Results: Performance Degradation
Random FGSM OSFW UAP-S UAP-O OSFW(U)
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Experimental Results: Computational Cost

• FGSM has low online cost, but requires rewriting victim agent’s memory

• OSFW has high online cost, so it misses perturbing 102 states on average

• UAP-S, UAP-O have high offline cost, but it does not interfere with the task 

• UAP-S, UAP-O and OSWF(U) low online cost, can be implemented in real-time

11
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Experimental Results: Continuous Control
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Challenge:

No discrete action space (lack of Q(s,a))

Solution:

• Exploit value function V(s) used in policy

• Modify Algorithm 1 using V(s)

• Goal: Decrease the evaluation of the state

UAP-S and UAP-O generalize to 

continuous control
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Detection and Mitigation of Adversarial Perturbations 

In tasks that can end with clear negative results:

• Losing a game

• Ends episode with negative returns

The victim would be able to suspend/forfeit an episode if the adversary could be 

detected to prevent the negative outcome

13

Can we develop an effective detection mechanism that can

detect the presence of the adversary?
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AD3 - Action Distribution Divergence Detector

Threshold-based detection method

• Measures statistical distance between the conditional action probability distributions

(CAPD)
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Effectiveness of AD3

• Effective in Pong for all agents against all attacks

• Less effective in Freeway especially against less effective attacks

• Not effective in Breakout with high false positive rate for DQN and PPO agents

• Useful in raising an alarm when the victim is in the direction of negative return (e.g., losing 

the game)

1. Lin, Yen-Chen, et al. "Detecting adversarial attacks on neural network policies with visual foresight." arXiv 2017. https://arxiv.org/abs/1710.00814

2. Zhang, Huan, et al. "Robust deep reinforcement learning against adversarial perturbations on state observations.“ NeurIPS2020 https://arxiv.org/abs/2003.08938

https://arxiv.org/abs/1710.00814
https://arxiv.org/abs/2003.08938
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Conclusion and Takeaways

Thwarting DRL agents

• UAP-S and UAP-O 

• have the same effectiveness as state-of-the-art attacks

• can be mounted in real time

Detecting the presence of adversary 

• Action Distribution Divergence Detector, AD3

• Defense relying on the temporal coherence of actions

• Useful to combine with other recovery methods/defenses

https://ssg.aalto.fi/research/projects/

Open positions at University of Waterloo: https://asokan.org/asokan/research/SecureSystems-open-positions-Jul2021.php

https://ssg.aalto.fi/research/projects/
https://asokan.org/asokan/research/SecureSystems-open-positions-Jul2021.php

