
Secure Systems Group, Aalto University

Jacopo Bufalino, Mario Di Francesco, Tuomas Aura

Analyzing network-layer access and isolation between
microservices

Abstract
Cloud-based applications are composed of several microservices, loosely coupled containers interacting over a
network. These applications, and the underlying infrastructure, are configured and deployed using a declara-
tive language to be easily reused and shared. However, reusability often introduces misconfigurations, espe-
cially when the components come from unfamiliar third parties. Additionally, the high number of microser-
vices makes it difficult to understand the access control of a cluster. Our work introduces a methodology to
analyze the network connectivity of a cluster and the Kubesonde tool, a Kubernetes-based implementation of
the methodology. We use Kubesonde to analyze the different sources of misconfiguration of 453 applications.

Analyzing network connectivity with
Kubesonde
Our methodology consists of probing TCP and UDP
endpoints. Probing is performed from each network
namespace to every other network namespace. We
discover the targets by combining the cluster APIs
and a sidecar agent running alongside each applica-
tion. Probing is performed when new applications
are deployed and is repeated at regular intervals.

Pod

App container

Kubesonde manager

Probe
container

Monitor
container

Probe
dispatcher

Monitor
listener

Kubernetes
API event listener

Kubesonde
API server

Probe
queue

Result
storage

Figure 1: Kubesonde architecture

The different components of Kubesonde (Figure 1)
are:
� Monitor containers: one per Pod, record the listen-

ing processes
� Probe containers: one per Pod, run probes
� Manager service: create, distribute, schedule, and

collect probes

Results
Based on our methodology, we analyzed 453 popular
Kubernetes applications deployed as Helm charts.
We found several misconfigurations, summarized in
Table 1.

Table 1: Summary of the misconfigurations

Misconfiguration No. applications
Listen to all network interfaces 304
HostNetwork flag enabled 22
Inaccurate port specification 271
Application uses dynamic ports 69
Network policies not enforced 444

In addition to those misconfigurations, other pos-
sible attack vectors manifest when an application
does not declare network policies (Figure 2 shows
an example of those applications). In detail, they
are: unnecessary connectivity to the Internet and
between microservices, access to public DNS, and
lack of access control between Pods. Based on our
analysis, we discovered a critical vulnerability af-
fecting a popular CI/CD platform and reported it.

9200/TCP, 9300/TCP 

9200/TCP, 9300/TCP 
---, __ 3306/TCP. 

9200/TCP, 9300/TCP 
8443/TCP, 8080/TCP 

8443/TCP, 8080/TCP 
9200/TCB, 9300/TCP 

9200/TCP, 9300/TCP 

3306/TCP 

8443/TCP, 8080/TCP 
9200/TCP, 9300/TCP 

9200/TCP, 9300/TCP 

elasticsearch-master-0 

CP, 9300/TCP 

elasticsearch-data-0 

✓ 9200/TCP, 9300/TCP 9200/TCP, P°O/TCP 

\ 9200/TCP, 9300/TCP 
9200/TCP, 9300/TCP 

elasticsearch-data-1 

Figure 2: Sample cloud infrastructure without access control

Contact: jacopo.bufalino@aalto.fi, mario.di.francesco@aalto.fi,
tuomas.aura@aalto.fi


